login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093769
Hook products of all partitions of 7.
1
144, 144, 240, 240, 252, 336, 336, 360, 360, 360, 360, 840, 840, 5040, 5040
OFFSET
1,1
FORMULA
a(n) = 7!/A003871(16-n).
MAPLE
H:=proc(pa) local F, j, p, Q, i, col, a, A: F:=proc(x) local i, ct: ct:=0: for i from 1 to nops(x) do if x[i]>1 then ct:=ct+1 else fi od: ct; end: for j from 1 to nops(pa) do p[1][j]:=pa[j] od: Q[1]:=[seq(p[1][j], j=1..nops(pa))]: for i from 2 to pa[1] do for j from 1 to F(Q[i-1]) do p[i][j]:=Q[i-1][j]-1 od: Q[i]:=[seq(p[i][j], j=1..F(Q[i-1]))] od: for i from 1 to pa[1] do col[i]:=[seq(Q[i][j]+nops(Q[i])-j, j=1..nops(Q[i]))] od: a:=proc(i, j) if i<=nops(Q[j]) and j<=pa[1] then Q[j][i]+nops(Q[j])-i else 1 fi end: A:=matrix(nops(pa), pa[1], a): product(product(A[m, n], n=1..pa[1]), m=1..nops(pa)); end: with(combinat): rev:=proc(a) [seq(a[nops(a)+1-i], i=1..nops(a))] end: sort([seq(H(rev(partition(7)[q])), q=1..numbpart(7))]);
MATHEMATICA
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
T[n_] := g[n, n, {}];
Sort[7!/T[7]] (* Jean-François Alcover, Aug 12 2024, after Alois P. Heinz in A060240 *)
CROSSREFS
Row n=7 of A093784.
Sequence in context: A350453 A374988 A056628 * A124512 A199546 A101936
KEYWORD
fini,full,nonn
AUTHOR
Emeric Deutsch, May 17 2004
STATUS
approved