

A093628


Triangle, read by rows, such that diagonal n is equal to the Euler transform of row n, where each row starts with 1.


2



1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 3, 1, 1, 5, 6, 7, 3, 1, 1, 6, 9, 13, 9, 4, 1, 1, 7, 12, 22, 19, 14, 4, 1, 1, 8, 16, 34, 39, 35, 17, 5, 1, 1, 9, 20, 50, 67, 81, 49, 24, 5, 1, 1, 10, 25, 70, 113, 159, 137, 80, 29, 6, 1, 1, 11, 30, 95, 173, 296, 306, 252, 110, 38, 6, 1, 1, 12, 36, 125
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

Row sums are A093629. Central terms in even rows form A093630.


LINKS

Table of n, a(n) for n=0..81.


EXAMPLE

The Euler transform of row 4: [1,4,4,3,1], equals diagonal 4: [1,5,9,22,39,81, 137,...]; the main diagonal has an index of zero.
Rows begin:
[1],
[1,1],
[1,2,1],
[1,3,2,1],
[1,4,4,3,1],
[1,5,6,7,3,1],
[1,6,9,13,9,4,1],
[1,7,12,22,19,14,4,1],
[1,8,16,34,39,35,17,5,1],
[1,9,20,50,67,81,49,24,5,1],
[1,10,25,70,113,159,137,80,29,6,1],
[1,11,30,95,173,296,306,252,110,38,6,1],
[1,12,36,125,262,503,657,637,413,165,45,7,1],...


CROSSREFS

Cf. A093629, A093630.
Sequence in context: A172119 A228125 A227588 * A186807 A114282 A112739
Adjacent sequences: A093625 A093626 A093627 * A093629 A093630 A093631


KEYWORD

nonn,tabl


AUTHOR

Paul D. Hanna, Apr 06 2004


STATUS

approved



