Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Nov 12 2024 15:59:40
%S 1,6,1,6,7,1,6,13,8,1,6,19,21,9,1,6,25,40,30,10,1,6,31,65,70,40,11,1,
%T 6,37,96,135,110,51,12,1,6,43,133,231,245,161,63,13,1,6,49,176,364,
%U 476,406,224,76,14,1,6,55,225,540,840,882,630,300,90,15,1,6,61,280,765,1380
%N (6,1)-Pascal triangle.
%C The array F(6;n,m) gives in the columns m >= 1 the figurate numbers based on A016921, including the octagonal numbers A000567, (see the W. Lang link).
%C This is the sixth member, d=6, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653, A093560-2, for d=1..5.
%C This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x):=Sum_{m=0..n} a(n,m)*x^m is G(z,x)=(1+5*z)/(1-(1+x)*z).
%C The SW-NE diagonals give A022096(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 5. Observation by _Paul Barry_, Apr 29 2004. Proof via recursion relations and comparison of inputs.
%C For a closed-form formula for generalized Pascal's triangle see A228576. - _Boris Putievskiy_, Sep 09 2013
%D Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
%D Ivo Schneider: Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.
%H Reinhard Zumkeller, <a href="/A093563/b093563.txt">Rows n = 0..125 of triangle, flattened</a>
%H Wolfdieter Lang, <a href="/A093563/a093563.pdf">First 10 rows and array of figurate numbers</a>
%F a(n, m)=F(6;n-m, m) for 0<= m <= n, otherwise 0, with F(6;0, 0)=1, F(6;n, 0)=6 if n>=1 and F(6;n, m):= (6*n+m)*binomial(n+m-1, m-1)/m if m>=1.
%F Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=6 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
%F G.f. column m (without leading zeros): (1+5*x)/(1-x)^(m+1), m>=0.
%F T(n, k) = C(n, k) + 5*C(n-1, k). - _Philippe Deléham_, Aug 28 2005
%F exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(6 + 13*x + 8*x^2/2! + x^3/3!) = 6 + 19*x + 40*x^2/2! + 70*x^3/3! + 110*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - _Peter Bala_, Dec 22 2014
%e Triangle begins
%e 1;
%e 6, 1;
%e 6, 7, 1;
%e 6, 13, 8, 1;
%e 6, 19, 21, 9, 1;
%e 6, 25, 40, 30, 10, 1;
%e ...
%t lim = 11; s = Series[(1 + 5*x)/(1 - x)^(m + 1), {x, 0, lim}]; t = Table[ CoefficientList[s, x], {m, 0, lim}]; Flatten[ Table[t[[j - k + 1, k]], {j, lim + 1}, {k, j, 1, -1}]] (* _Jean-François Alcover_, Sep 16 2011, after g.f. *)
%o (Haskell)
%o a093563 n k = a093563_tabl !! n !! k
%o a093563_row n = a093563_tabl !! n
%o a093563_tabl = [1] : iterate
%o (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [6, 1]
%o -- _Reinhard Zumkeller_, Aug 31 2014
%o (Python)
%o from math import comb, isqrt
%o def A093563(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*(r+5*(r-a))//r if n else 1 # _Chai Wah Wu_, Nov 12 2024
%Y Row sums: A005009(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 5 for n=2 and 0 else.
%Y Cf. A007318, A093564 (d=7), A228196, A228576.
%Y The column sequences give for m=1..9: A016921, A000567 (octagonal), A002414, A002419, A051843, A027810, A034265, A054487, A055848.
%K nonn,easy,tabl
%O 0,2
%A _Wolfdieter Lang_, Apr 22 2004