Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 Nov 12 2024 16:14:57
%S 1,4,1,4,5,1,4,9,6,1,4,13,15,7,1,4,17,28,22,8,1,4,21,45,50,30,9,1,4,
%T 25,66,95,80,39,10,1,4,29,91,161,175,119,49,11,1,4,33,120,252,336,294,
%U 168,60,12,1,4,37,153,372,588,630,462,228,72,13,1,4,41,190,525,960,1218
%N (4,1) Pascal triangle.
%C The array F(4;n,m) gives in the columns m >= 1 the figurate numbers based on A016813, including the hexagonal numbers A000384 (see the W. Lang link).
%C This is the fourth member, d=4, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653 and A093560, for d=1..3.
%C This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x) = Sum_{m=0..n} a(n,m)*x^m is G(z,x) = (1+3*z)/(1-(1+x)*z).
%C The SW-NE diagonals give A000285(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 3. Observation by _Paul Barry_, Apr 29 2004. Proof via recursion relations and comparison of inputs.
%C For a closed-form formula for generalized Pascal's triangle see A228576. - _Boris Putievskiy_, Sep 09 2013
%C The n-th row polynomial is (4 + x)*(1 + x)^(n-1) for n >= 1. More generally, the n-th row polynomial of the Riordan array ( (1-a*x)/(1-b*x), x/(1-b*x) ) is (b - a + x)*(b + x)^(n-1) for n >= 1. - _Peter Bala_, Mar 02 2018
%D Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
%D Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.
%H Reinhard Zumkeller, <a href="/A093561/b093561.txt">>Rows n = 0..125 of triangle, flattened</a>
%H P. Bala, <a href="/A081577/a081577.pdf">A note on the diagonals of a proper Riordan Array</a>
%H W. Lang, <a href="/A093561/a093561.txt">First 10 rows and array of figurate numbers </a>.
%F a(n, m) = F(4;n-m, m) for 0<= m <= n, otherwise 0, with F(4;0, 0)=1, F(4;n, 0)=4 if n>=1 and F(4;n, m) = (4*n+m)*binomial(n+m-1, m-1)/m if m>=1.
%F Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=4 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
%F G.f. row m (without leading zeros): (1+3*x)/(1-x)^(m+1), m>=0.
%F T(n, k) = C(n, k) + 3*C(n-1, k). - _Philippe Deléham_, Aug 28 2005
%F exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(4 + 9*x + 6*x^2/2! + x^3/3!) = 4 + 13*x + 28*x^2/2! + 50*x^3/3! + 80*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - _Peter Bala_, Dec 22 2014
%e Triangle begins
%e [1];
%e [4, 1];
%e [4, 5, 1];
%e [4, 9, 6, 1];
%e ...
%o (Haskell)
%o a093561 n k = a093561_tabl !! n !! k
%o a093561_row n = a093561_tabl !! n
%o a093561_tabl = [1] : iterate
%o (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [4, 1]
%o -- _Reinhard Zumkeller_, Aug 31 2014
%o (Python)
%o from math import comb, isqrt
%o def A093561(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*(r+3*(r-a))//r if n else 1 # _Chai Wah Wu_, Nov 12 2024
%Y Cf. Row sums: A020714(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 3 for n=2 and 0 otherwise.
%Y Columns m=1..9: A016813, A000384 (hexagonal), A002412, A002417, A034263, A051947, A050483, A052181, A055843.
%Y Cf. A007318, A093562 (d=5), A228196, A228576.
%K nonn,easy,tabl
%O 0,2
%A _Wolfdieter Lang_, Apr 22 2004