login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of numerators of coefficients of Faulhaber polynomials used for sums of even powers.
5

%I #23 Aug 28 2019 17:50:44

%S 1,1,-1,1,-1,1,1,-1,1,-1,1,-5,17,-5,5,1,-5,41,-236,691,-691,1,-7,14,

%T -22,359,-7,7,1,-14,77,-293,1519,-1237,3617,-3617,1,-6,217,-1129,8487,

%U -6583,750167,-43867,43867,1,-5,23,-470,689,-28399,1540967,-1254146,174611,-174611,1,-55,209,-902,60511

%N Triangle of numerators of coefficients of Faulhaber polynomials used for sums of even powers.

%C The companion triangle with the denominators is A093559.

%C Sum_{k=1..n} k^(2*(m-1)) = (2*n+1)*Sum_{j=0..m-1} Fe(m,k)*(n*(n+1))^(m-1-j), m >= 2. Sums of even powers of the first n integers >0 as polynomials in u := n*(n+1) (falling powers of u). See bottom of p. 288 of the 1993 Knuth reference.

%D Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.

%H A. Dzhumadil'daev, D. Yeliussizov, <a href="http://cs.uwaterloo.ca/journals/JIS/VOL16/Yeliussizov/dzhuma6.html">Power sums of binomial coefficients</a>, Journal of Integer Sequences, 16 (2013), Article 13.1.4.

%H D. E. Knuth, <a href="http://dx.doi.org/10.1090/S0025-5718-1993-1197512-7">Johann Faulhaber and sums of powers</a>, Math. Comput. 203 (1993), 277-294.

%H W. Lang, <a href="/A093558/a093558.txt">First 10 rows and triangle with rational entries</a>.

%H D. Yeliussizov, <a href="https://web.archive.org/web/20160927104833/http://www.kazntu.kz/sites/default/files/20121221ND_Eleusizov.pdf">Permutation Statistics on Multisets</a>, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012. [_N. J. A. Sloane_, Jan 03 2013]

%F a(n, m) = numerator(Fe(m, k), with Fe(m, k):=(m-k)*A(m, k)/(2*m*(2*m-1)) with Faulhaber numbers A(m, k):=A093556(m, k)/A093557(m, k) in Knuth's version. From the bottom of p. 288 of the 1993 Knuth reference.

%e [1]; [1,-1]; [1,-1,1]; [1,-1,1,-1]; ...

%e Numerators of [1/6]; [1/10,-1/30]; [1/14,-1/14,1/42]; [1/18,-1/9,1/10,-1/30]; ... (see W. Lang link)

%t a[m_, k_] := (-1)^(m-k)*Sum[Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; t[m_, k_] := (m-k)*a[m, k]/(2*m*(2*m-1)); Table[t[m, k] // Numerator, {m, 2, 12}, {k, 0, m-2}] // Flatten (* _Jean-François Alcover_, Mar 03 2014 *)

%K sign,frac,tabl,easy

%O 2,12

%A _Wolfdieter Lang_, Apr 02 2004