login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of numerators of coefficients of Faulhaber polynomials in Knuth's version.
8

%I #29 Aug 28 2019 16:56:13

%S 1,1,0,1,-1,0,1,-4,2,0,1,-5,3,-3,0,1,-4,17,-10,5,0,1,-35,287,-118,691,

%T -691,0,1,-8,112,-352,718,-280,140,0,1,-21,66,-293,4557,-3711,10851,

%U -10851,0,1,-40,217,-4516,2829,-26332,750167,-438670,219335,0,1,-33,506,-2585,7579,-198793,1540967,-627073

%N Triangle of numerators of coefficients of Faulhaber polynomials in Knuth's version.

%C The companion triangle with the denominators is A093557.

%C In the 1986 Edwards reference, eq. 7, p. 453, the lower triangular matrix F^{-1} is obtained from F^{-1}(m,l) = A(m,m-l)/m with m >= 2, l >= 2. See the W. Lang link for this triangle.

%C Sum_{j=1..n} j^(2*m-1) = Sum_{k=0..m-1} A(m,k)*u^(m-k)/(2*m), with u:=n*(n+1), A(m,k):= A093556(m,k)/ A093557(m,k) and m=1,2,... (Faulhaber's m-th row polynomial in falling powers of u:=n*(n+1), divided by 2*m, gives the sum of the (2*m-1)-th power of the first n integers > 0. See the W. Lang link for the Faulhaber triangle.)

%C Sum_{j=1..n} j^(2*(m-1)) = (2*n+1)*Sum_{j=0..m-1} (m-j)*A(m,j)*(n*(n+1))^(m-1-j)/(2*m*(2*m-1)), with u:=n*(n+1) and m >= 2. Sum of the even powers of the first n integers > 0. From the bottom of p. 288 of the 1993 Knuth reference with A^{(m)}_k = A(m,k). See also A093558 with A093559.

%D Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.

%H A. W. F. Edwards, <a href="http://www.jstor.org/stable/2323466">A quick route to sums of powers</a>, Amer. Math. Monthly 93 (1986) 451-455.

%H D. E. Knuth, <a href="http://dx.doi.org/10.1090/S0025-5718-1993-1197512-7">Johann Faulhaber and sums of powers</a>, Math. Comput. 203 (1993), 277-294.

%H W. Lang, <a href="/A093556/a093556.txt">First 10 rows and Faulhaber triangle with rational entries and examples</a>.

%H D. Yeliussizov, <a href="https://web.archive.org/web/20160927104833/http://www.kazntu.kz/sites/default/files/20121221ND_Eleusizov.pdf">Permutation Statistics on Multisets</a>, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012. - _N. J. A. Sloane_, Jan 03 2013

%F a(m, k) = numerator(A(m, k)) with recursion: A(m, 0)=1, A(m, k) = -(Sum_{j=0..k-1} binomial(m-j, 2*k+1-2*j)*A(m, j))/(m-k) if 0 <= k <= m-1, otherwise 0. From the Knuth 1993 reference, p. 288, eq.(*) with A^{(m)}_k = A(m, k).

%F A(m, k) = ((-1)^(m-k))*Sum_{j=0..m-k} binomial(2*m, m-k-j)*binomial(m-k+j, j)*((m-k-j)/(m-k+j))*Bernoulli(m+k+j). From the Knuth 1993 reference, p. 289, last eq. with A^{(m)}_k = A(m, k). Attributed to I. M. Gessel and X. G. Viennot (see A065551 for the 1989 reference). For Bernoulli numbers see A027641 with A027642.

%e Triangle begins:

%e [1];

%e [1,0];

%e [1,-1,0];

%e [1,-4,2,0];

%e ...

%e Numerators of Knuth's Faulhaber triangle A(m,k):

%e [1],

%e [1, 0],

%e [1, -1/2, 0],

%e [1, -4/3, 2/3, 0],

%e ...

%e A(m,m-1)=1 if m=1, else 0.

%e Edwards' Faulhaber triangle F^{-1}(m,l) = A(m,m-l)/m, for m>=2, l>=2:

%e [1/2],

%e [-1/6, 1/3],

%e [1/6, -1/3, 1/4],

%e [-3/10, 3/5, -1/2, 1/5],

%e ...

%t a[m_, k_] := (-1)^(m-k)*Sum[ Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; Flatten[ Table[ Numerator[a[m, k]], {m, 1, 11}, {k, 0, m-1}]] (* _Jean-François Alcover_, Oct 25 2011 *)

%Y Cf. A065551 and A065553 for Ira M. Gessel's and X. G. Viennot's version of Faulhaber triangle which is Edwards' Faulhaber triangle augmented with a first row and first column.

%Y Cf. A103438.

%K sign,frac,tabl,easy

%O 1,8

%A _Wolfdieter Lang_, Apr 02 2004