login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of the average length of a line segment picked at random in the unit n-ball for odd n.
3

%I #22 Nov 22 2018 02:40:58

%S 2,36,800,1568,290304,123904,15228928,8785920,492437504,1608777728,

%T 99574874112,2508338495488,9164554240000,106895360655360,

%U 31154082152448,430159094087680,580265191384547328,148655260565504000,1860654187101028352,20860356402314477568

%N Numerators of the average length of a line segment picked at random in the unit n-ball for odd n.

%H Eric Weisstein's World of Mathematics, <a href="http://www.mathworld.wolfram.com/BallLinePicking.html">Ball Line Picking</a>.

%e 2/3, 128/(45*Pi), 36/35, 16384/(4725*Pi), 800/693, ...

%p B := (z,a,b) -> z^a/a*hypergeom([a,1-b],[a+1],z);

%p av := n -> simplify( int( n*s^n*B(1-s^2/4,(n+1)/2,1/2)/B(1,(n+1)/2,1/2), s=0..2) );

%t B[z_, a_, b_] := z^a/a*HypergeometricPFQ[{a, 1 - b}, {a + 1}, z]; a[n_] := Integrate[ n*s^n*B[1 - s^2/4, (n + 1)/2, 1/2]/B[1, (n + 1)/2, 1/2], {s, 0, 2}]; Table[a[n], {n, 1, 21, 2}] // Numerator (* _Jean-François Alcover_, Oct 31 2012, translated from Maple *)

%Y Cf. A093531, A093532, A093533.

%K nonn,frac

%O 1,1

%A _Eric W. Weisstein_, Mar 30 2004

%E a(10)-a(11) from _Max Alekseyev_, Dec 12 2011

%E a(12)-a(14) from _Robert G. Wilson v_, Nov 04 2013

%E a(15)-a(20) from _Alois P. Heinz_, Nov 04 2013