Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Dec 30 2024 16:53:44
%S 1,1,24,720,2520,120960,259459200,1357171200,4929724800,
%T 42608389824000,11912739135897600,59907396092544000,
%U 20458385028297216000,7926428532945162240000,4693751193479184764928000,328774885640356760904499200000,12797917159224592605450240000
%N Product of composite numbers among next n numbers.
%C Conjecture: There are finitely many numbers such that a(n)is not == 0 (mod a(n-1). (Also mentioned in A093455.)
%C Product of all composite numbers between n*(n-1)/2+1 and n*(n+1)/2 (including boundaries). - _Stefan Steinerberger_, Apr 02 2006
%H Harvey P. Dale, <a href="/A093456/b093456.txt">Table of n, a(n) for n = 1..244</a>
%e a(5) = 12*14*15 = 2520.
%t Table[a := Range[n*(n - 1)/2 + 1, n*(n + 1)/2]; b := Select[a, Not[PrimeQ[ # ]] &]; Product[b[[i]], {i, 1, Length[b]}], {n, 1, 20}] (* _Stefan Steinerberger_, Apr 02 2006 *)
%t Module[{nn=20},Times@@Select[#,CompositeQ]&/@TakeList[Range[(nn(nn+1))/2],Range[nn]]] (* _Harvey P. Dale_, Dec 30 2024 *)
%Y Cf. A093455.
%K nonn,less,changed
%O 1,3
%A _Amarnath Murthy_, Apr 03 2004
%E More terms from _Stefan Steinerberger_, Apr 02 2006