login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

If n is even then 1, otherwise n.
27

%I #80 Dec 06 2024 07:02:29

%S 1,1,1,3,1,5,1,7,1,9,1,11,1,13,1,15,1,17,1,19,1,21,1,23,1,25,1,27,1,

%T 29,1,31,1,33,1,35,1,37,1,39,1,41,1,43,1,45,1,47,1,49,1,51,1,53,1,55,

%U 1,57,1,59,1,61,1,63,1,65,1,67,1,69,1,71,1,73,1,75,1,77,1,79,1,81,1,83,1,85

%N If n is even then 1, otherwise n.

%C Continued fraction expansion for tan(1).

%C 1 followed by run lengths of A062557 = 2n-1 1's followed by a 2. - _Jeremy Gardiner_, Aug 12 2012

%C Greatest common divisor of n and (n+1) mod 2. - _Bruno Berselli_, Mar 07 2017

%H Harry J. Smith, <a href="/A093178/b093178.txt">Table of n, a(n) for n = 0..20000</a>

%H D. H. Lehmer, <a href="/A016825/a016825.pdf">Continued fractions containing arithmetic progressions</a>, Scripta Mathematica, 29 (1973): 17-24. [Annotated copy of offprint]

%H Simon Plouffe, <a href="https://vixra.org/pdf/1409.0099v1.pdf">A Search for a mathematical expression for mass ratios using a large database</a>. page 3.

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%H <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,-1).

%F G.f.: (1+x-x^2+x^3)/(1-x^2)^2.

%F a(n) = (-1)^n * a(-n) for all n in Z.

%F a(n) = (1/2) * [ 1 + n + (1-n)*(-1)^n ]. - _Ralf Stephan_, Dec 02 2004

%F a(n) = n^n mod (n+1) for n > 0. - _Amarnath Murthy_, Apr 18 2004

%F Satisfies a(0) = 1, a(n+1) = a(n) + n if a(n) < n else a(n+1) = a(n)/n. - _Amarnath Murthy_, Oct 29 2002

%F a(n) = ((n+1)+(1-n)(-1)^n)/2 and have e.g.f. (1+x)cosh(x). - _Paul Barry_, Apr 09 2003

%F a(n) = binomial(n, 2*floor(n/2)). - _Paul Barry_, Dec 28 2006

%F Starting (1, 1, 3, 1, 5, 1, 7, ...) = A133080^(-1) * [1,2,3,...]. - _Gary W. Adamson_, Sep 08 2007

%F a(n) = denom(b(n+2)/b(n+1)) with b(n) = product((2*n-3-2*k), k=0..floor(n/2-1)). - _Johannes W. Meijer_, Jun 18 2009

%F a(n) = 2*floor(n/2) - n*(n-1 mod 2) + 1. - _Wesley Ivan Hurt_, Oct 19 2013

%F a(n) = n^(n mod 2). - _Wesley Ivan Hurt_, Apr 16 2014

%e 1.557407724654902230506974807... = 1 + 1/(1 + 1/(1 + 1/(3 + 1/(1 + ...))))

%e G.f. = 1 + x + x^2 + 3*x^3 + x^4 + 5*x^5 + x^6 + 7*x^7 + x^8 + 9*x^9 + x^10 + ...

%p A093178:=n->(n+1+(1-n)*(-1)^n)/2; seq(A093178(k), k=0..100); # _Wesley Ivan Hurt_, Oct 19 2013

%t Join[{1},Riffle[Range[1,85,2],1]] (* or *) Array[If[EvenQ[#],1,#]&,87,0] (* _Harvey P. Dale_, Nov 23 2011 *)

%o (PARI) {a(n) = if( n%2, n, 1)};

%Y Equals |A009001(n)|.

%Y Cf. A133080, A049471 (decimal expansion), A009001, A161738, A062557, A124625.

%K nonn,easy

%O 0,4

%A _Michael Somos_, Mar 27 2004