login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binomial transform of Fibonacci(2n-1) (A001519).
13

%I #32 Sep 08 2022 08:45:13

%S 1,2,5,15,50,175,625,2250,8125,29375,106250,384375,1390625,5031250,

%T 18203125,65859375,238281250,862109375,3119140625,11285156250,

%U 40830078125,147724609375,534472656250,1933740234375,6996337890625

%N Binomial transform of Fibonacci(2n-1) (A001519).

%H G. C. Greubel, <a href="/A093129/b093129.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-5).

%F G.f.: (1-3*x)/(1-5*x+5*x^2).

%F a(n) = (5-sqrt(5))*((5+sqrt(5))/2)^n/10 + (5+sqrt(5))*((5-sqrt(5))/2)^n/10.

%F a(n) = A093123(n)/2^n.

%F a(n) = A020876(n-1). - _R. J. Mathar_, Sep 05 2008

%F a(n) = A030191(n) - 3*A030191(n-1). - _R. J. Mathar_, Jun 29 2012

%F a(2*n) = 5^n*Fibonacci(2*n-1), a(2*n+1) = 5^n*Lucas(2*n). - _G. C. Greubel_, Dec 27 2019

%F E.g.f.: (1/10)*exp((1/2)*(5-sqrt(5))*x)*(5 + sqrt(5) + (5 - sqrt(5))*exp(sqrt(5)*x)). - _Stefano Spezia_, Dec 28 2019

%p a:= n-> (<<0|1>, <-5|5>>^n. <<1,2>>)[1,1]:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Aug 29 2015

%t LinearRecurrence[{5, -5}, {1, 2}, 25] (* _Jean-François Alcover_, May 11 2019 *)

%t Table[If[EvenQ[n], 5^(n/2)*Fibonacci[n-1], 5^((n-1)/2)*LucasL[n-1]], {n,0,30}] (* _G. C. Greubel_, Dec 27 2019 *)

%o (Sage) [lucas_number2(n,5,5) for n in range(-1,25)] # _Zerinvary Lajos_, Jul 08 2008

%o (PARI) my(x='x+O('x^30)); Vec((1-3*x)/(1-5*x+5*x^2)) \\ _G. C. Greubel_, Dec 27 2019

%o (Magma) I:=[1,2]; [n le 2 select I[n] else 5*(Self(n-1) - Self(n-2)): n in [1..30]]; // _G. C. Greubel_, Dec 27 2019

%o (GAP) a:=[1,2];; for n in [3..30] do a[n]:=5*(a[n-1]-a[n-2]); od; a; # _G. C. Greubel_, Dec 27 2019

%Y Cf. A000032, A000045, A001519, A020876, A030191, A093123.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Mar 23 2004