Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Aug 16 2016 21:17:44
%S 1,1,2,3,6,10,19,33,62,110,204,366,675,1219,2239,4059,7439,13518,
%T 24737,45018,82304,149924,273929,499290,911902,1662787,3036105,
%U 5537577,10109364,18441799,33663239,61416729,112099746,204536183,373305550,681166986,1243173492,2268490929,4140035734,7554756990,13787320832,25159612832,45915363672
%N G.f.: A(x) = x/(1 - x - G001190(x^2)), where G001190 is the g.f. of A001190, the Wedderburn-Etherington numbers (binary rooted trees).
%C Not the same as A003237.
%F G.f. satisfies the following identities:
%F (1) A(x^2) = A(x)^2 / (1 + 2*A(x) + 2*A(x)^2),
%F (2) A(-x) = -A(x) / (1 + 2*A(x)),
%F (3) A(x) + A(-x) = -2*A(x)*A(-x),
%F (4) A(x)^2 / (1 + 2*A(x)) = A(x^2) / (1 - 2*A(x^2)).
%e A(x) = x + x^2 + 2x^3 + 3x^4 + 6x^5 + 10x^6 + 19x^7 + 33x^8 + ... = x/(1-x -(x^2 + x^4 + x^6 + 2x^8 + 3x^10 + 11x^12 + 23x^14 + ...)).
%o (PARI) {a(n) = my(A=x,u,v); for(k=2,n,u=A+x*O(x^k); v=subst(u,x,x^2); A-=x^k*polcoeff(u^2 -v*(1+2*u+2*u^2),k+1)/2); polcoeff(A,n)}
%o for(n=1,30,print1(a(n),", "))
%Y Cf. A001190, A003237.
%K nonn
%O 1,3
%A _Paul D. Hanna_, Mar 23 2004
%E Changed offset to 1 and removed leading zero. - _Paul D. Hanna_, Aug 16 2016