login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Natural numbers with appended Luhn mod 10 check digit.
10

%I #18 Jul 23 2024 18:06:23

%S 0,18,26,34,42,59,67,75,83,91,109,117,125,133,141,158,166,174,182,190,

%T 208,216,224,232,240,257,265,273,281,299,307,315,323,331,349,356,364,

%U 372,380,398,406,414,422,430,448,455,463,471,489,497,505,513,521,539

%N Natural numbers with appended Luhn mod 10 check digit.

%C Indices of terms in A093017 == 0 mod 10.

%C A249832(a(n)) = 1; A093017(a(n)) mod 10 = 0; a(n) = 10*n + A093019(n); A093019(n) = a(n) mod 10. - _Reinhard Zumkeller_, Nov 08 2014

%C The sequence includes all Canadian Social Insurance Numbers, as well as all modern credit and debit card numbers. - _Mathew Englander_, Aug 04 2021

%H Reinhard Zumkeller, <a href="/A093018/b093018.txt">Table of n, a(n) for n = 0..10000</a>

%H John Kilgo, DotNetJohn.com, <a href="http://www.dotnetjohn.com/articles/articleid97.aspx">Using the Luhn Algorithm</a>

%H Webopedia, <a href="http://www.webopedia.com/TERM/L/Luhn_formula.html">Luhn formula</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Luhn_algorithm">Luhn algorithm</a>

%H <a href="/index/De#decimal_expansion">Index entries for sequences related to decimal expansion of n</a>

%e 18 is in the sequence because A093017(18)=10 == 0 mod 10.

%e 59 is in the sequence because A093017(59)=10 == 0 mod 10.

%o (Haskell)

%o a093018 n = a093018_list !! n

%o a093018_list = filter ((== 1) . a249832) [0..]

%o -- _Reinhard Zumkeller_, Nov 08 2014

%o (Python)

%o def a(n):

%o s = str(n)

%o r = s[::-1]

%o x = sum(int(d) for d in r[1::2])

%o x += sum(q if (q:=2*int(d)) < 10 else q-9 for d in r[::2])

%o x = x%10

%o c = str((10 - x) if x > 0 else 0)

%o return int(s+c)

%o print([a(n) for n in range(54)]) # _Michael S. Branicky_, Jul 23 2024

%Y Cf. A093017-A093029.

%Y Cf. A249832, A093017, A249830 (complement), A249854, A249855, A010879.

%K easy,nonn,base

%O 0,2

%A _Ray Chandler_, Apr 03 2004

%E Original name end comment interchanged by _Reinhard Zumkeller_, Nov 08 2014