login
A092943
Time wave sequence of Terrance McKenna.
1
0, 0, 0, 2, 7, 4, 3, 2, 6, 8, 13, 5, 26, 25, 24, 15, 13, 16, 14, 19, 17, 24, 20, 25, 63, 60, 56, 55, 47, 53, 36, 38, 39, 43, 39, 35, 22, 24, 22, 21, 29, 30, 27, 26, 26, 21, 23, 19, 57, 62, 61, 55, 57, 57, 35, 50, 40, 29, 28, 26, 50, 51, 52, 61, 60, 60, 42, 42, 43, 43, 42, 41, 45
OFFSET
0,4
COMMENTS
The idea that time is experienced as a series of identifiable elements in flux is highly developed in the I Ching. Indeed the temporal modeling of the I Ching offers an extremely well-developed alternative to the "flat-duration" point of view. The I Ching views time as a finite number of distinct and irreducible elements, in the same way that the chemical elements compose the world of matter. For the Taoist sages of pre-Han China time was composed of sixty-four irreducible elements. It is upon relations among these sixty-four elements that I have sought to erect a new model of time that incorporates the idea of the conservation of novelty and still recognizes time as a process of becoming.
The arrangement of the hexagrams of the I Ching is the King Wen Sequence.
MAPLE
The formula for the values w[0], w[1], ..., w[383], the 384 "data points" which lie at the heart of the entire timewave construction, can be expressed in Maple as follows:
h[0]:=3; h[1]:=6; h[2]:=2; h[3]:=4; h[4]:=4; h[5]:=4; h[6]:=3; h[7]:=2; h[8]:=4; h[9]:=2; h[10]:=4; h[11]:=6; h[12]:=2; h[13]:=2; h[14]:=4; h[15]:=2; h[16]:=2; h[17]:=6; h[18]:=3; h[19]:=4; h[20]:=3; h[21]:=2; h[22]:=2; h[23]:=2; h[24]:=3; h[25]:=4; h[26]:=2; h[27]:=6; h[28]:=2; h[29]:=6; h[30]:=3; h[31]:=2; h[32]:=3; h[33]:=4; h[34]:=4; h[35]:=4; h[36]:=2; h[37]:=4; h[38]:=6; h[39]:=4; h[40]:=3; h[41]:=2; h[42]:=4; h[43]:=2; h[44]:=3; h[45]:=4; h[46]:=3; h[47]:=2; h[48]:=3; h[49]:=4; h[50]:=4; h[51]:=4; h[52]:=1; h[53]:=6; h[54]:=2; h[55]:=2; h[56]:=3; h[57]:=4; h[58]:=3; h[59]:=2; h[60]:=1; h[61]:=6; h[62]:=3; h[63]:=6; h[64]:=3;
w[k] := abs( ((-1)^trunc((k-1)/32))* (h[k-1 mod 64] - h[k-2 mod 64] +h[ -k mod 64] - h[1-k mod 64]) + 3*((-1)^trunc((k-3)/96))* (h[trunc(k/3)-1 mod 64] - h[trunc(k/3)-2 mod 64] + h[ -trunc(k/3) mod 64] - h[1-trunc(k/3) mod 64]) + 6*((-1)^trunc((k-6)/192))* (h[trunc(k/6)-1 mod 64] - h[trunc(k/6)-2 mod 64] + h[ -trunc(k/6) mod 64] - h[1-trunc(k/6) mod 64]) ) + abs ( 9 - h[ -k mod 64] - h[k-1 mod 64] + 3*(9- h[ -trunc(k/3) mod 64] - h[ trunc(k/3)-1 mod 64]) + 6*(9- h[ -trunc(k/6) mod 64] - h[ trunc (k/6)-1 mod 64]) );
CROSSREFS
Cf. A092948.
Sequence in context: A125140 A257345 A110637 * A332503 A196501 A292819
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Apr 19 2004
STATUS
approved