login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1+2x+3x^2+6x^3)/((1+x)(1-x)^2).
2

%I #12 Jun 13 2015 00:51:19

%S 1,3,7,15,19,27,31,39,43,51,55,63,67,75,79,87,91,99,103,111,115,123,

%T 127,135,139,147,151,159,163,171,175,183,187,195,199,207,211,219,223,

%U 231,235,243,247,255,259,267,271,279,283,291,295,303,307,315,319,327,331

%N Expansion of (1+2x+3x^2+6x^3)/((1+x)(1-x)^2).

%C mod(A092899(n),4)=1,3,3,3,... = sum{k=0..n, mod(2^k,4)} Partial sums of 1,2,4,8,4,8,4,8....

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n)=4floor((n+1)/2)+4n-5+6*0^n; a(n)=sum{k=0...n, mod(A078008(k), 4)}+sum{k=0..n, 2*mod(A001045(k), 4)}.

%F For n > 0, a(n) = 6*n - 4 - (-1)^n; a(n+3) = a(n+2) + a(n+1) - a(n) - _Warut Roonguthai_, Oct 19 2005

%K easy,nonn

%O 0,2

%A _Paul Barry_, Mar 12 2004