login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients of the product of two consecutive Fibonacci polynomials.
2

%I #19 Aug 15 2017 03:11:48

%S 1,1,1,1,3,2,1,5,7,2,1,7,16,13,3,1,9,29,40,22,3,1,11,46,91,86,34,4,1,

%T 13,67,174,239,166,50,4,1,15,92,297,541,553,296,70,5,1,17,121,468,

%U 1068,1461,1163,496,95,5,1,19,154,695,1912,3300,3544,2269,791,125,6,1,21,191

%N Triangle of coefficients of the product of two consecutive Fibonacci polynomials.

%C The Fibonacci polynomials are defined by F(0,x) = 1, F(1,x) = 1 and F(n, x) = F(n-1, x) + x*F(n-2, x).

%C This is also the reflected triangle of coefficients of the polynomials defined by the recursion: c0=-1; p(x, n) = (2 + c0 - x)*p(x, n - 1) + (-1 - c0*(2 - x))*p(x, n - 2) + c0*p(x, n - 3). - _Roger L. Bagula_, Apr 09 2008

%F From _Johannes W. Meijer_, Jul 20 2011: (Start)

%F T(n, k) = Sum_{i=0..k} (-1)^(i+k)*binomial(i+2*n-2*k+1, i).

%F T(n, k) = A035317(2*n-k, k) = A158909(n, n-k.) (End)

%F T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2) - T(n-3,k-3), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - _Philippe Deléham_, Nov 12 2013

%e Triangle begins;

%e 1;

%e 1,1;

%e 1,3,2;

%e 1,5,7,2;

%e 1,7,16,13,3;

%e 1,9,29,40,22,3;

%e ...

%e F(3,x) = 1 + 2*x and F(4,x) = 1 + 3*x + x^2 so F(3,x)*F(4,x)=(1 + 3*x + x^2)*(1 + 2*x) = 1 + 5*x + 7*x^2 + 2*x^3 leads to T(3,k) = [1,5,7,2].

%p T:=proc(n,k): add((-1)^(i+k)*binomial(i+2*n-2*k+1,i), i=0..k) end: seq(seq(T(n,k), k=0..n), n=0..10); # _Johannes W. Meijer_, Jul 20 2011

%p T:=proc(n,k): coeff(F(n, x)*F(n+1, x), x, k) end: F:=proc(n, x) option remember: if n=0 then 1 elif n=1 then 1 else procname(n-1, x) + x*procname(n-2, x) fi: end: seq(seq(T(n,k), k=0..n), n=0..10); # _Johannes W. Meijer_, Jul 20 2011

%t c0 = -1; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 2 - x + c0; p[x_, n_] :=p[x, n] = (2 + c0 -x)*p[x, n - 1] + (-1 - c0 (2 - x))*p[x, n - 2] + c0*p[x, n - 3]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[Reverse[CoefficientList[p[x, n], x]], {n, 0, 10}]; Flatten[a] (* _Roger L. Bagula_, Apr 09 2008 *)

%o (PARI) T(n,k)=local(m);if(k<0 || k>n,0,n++; m=contfracpnqn(matrix(2,n,i,j,x)); polcoeff(m[1,1]*m[2,1]/x^n,n-k))

%Y Row sums are A001654(n+1).

%Y Cf. A109954, A136674.

%K nonn,tabl

%O 0,5

%A _Michael Somos_, Mar 10 2004

%E Edited and information added by _Johannes W. Meijer_, Jul 20 2011