Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jun 14 2024 05:27:06
%S 2,12,81,598,4708,38622,327823,2847315,25163920,225457188,2042143752,
%T 18663517814,171846353051,1592315669558,14834375047080,
%U 138850713196545,1305003833233144,12309801809090282,116490773908518079,1105570064097792198,10519869248735544757,100335959685809643520
%N Number of primes between A092800(n) and 10^n.
%F a(n) = PrimePi(10^n) - PrimePi(A092800(n)) = PrimePi(10^n) - PrimePi(A046731(n)/A006880(n)). - _Robert G. Wilson v_, Jan 19 2007
%F a(n) = A006880(n) - A092849(n). - _Amiram Eldar_, Jun 14 2024
%e Below 10^1 there are 4 primes: 2 + 3 + 5 + 7 = 17. The rounded mean is 17/4 =~ 4. There are 2 primes > 4: 5 and 7, so a(1) = 2.
%Y Cf. A006880, A092800, A092849, A092851.
%K nonn
%O 1,1
%A _Enoch Haga_, Mar 07 2004
%E a(9)-a(13) from _Robert G. Wilson v_, Jan 19 2007
%E a(14)-a(22) from _Amiram Eldar_, Jun 14 2024