login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of triangle A092683, in which the convolution of each row with {1,1} produces a triangle that, when flattened, equals the flattened form of A092683.
2

%I #7 Jun 13 2017 21:55:59

%S 1,2,5,11,25,55,120,258,551,1169,2469,5193,10885,22746,47404,98553,

%T 204443,423259,874680,1804556,3717348,7647075,15711194,32242013,

%U 66096274,135366764,276988466,566312984,1156974619,2362043602

%N Row sums of triangle A092683, in which the convolution of each row with {1,1} produces a triangle that, when flattened, equals the flattened form of A092683.

%F G.f.: A(x,y) = H(x)*(1-x)/(1-2*x), where H(x) satisfies: H(x) = H(x^2/(1-x))/(1-x) and H(x) is the g.f. of A092684. - _Paul D. Hanna_, Jul 17 2006

%o (PARI) {T(n,k)=if(n<0 || k>n,0, if(n==0 && k==0,1, if(n==1 && k<=1,1, if(k==n,T(n,0), T(n-1,k)+T(n-1,k+1)))))}

%o a(n)=sum(k=0,n,T(n,k))

%o (PARI) {a(n)=local(A,F=1+x,d=1,G=x,H=1+x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); sum(k=0,2*n,polcoeff(polcoeff(A,n,x),k,y))} \\ _Paul D. Hanna_, Jul 17 2006

%Y Cf. A092683, A092684, A092686, A092689, A120897, A120902.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Mar 04 2004