login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of permutations p of [n] in which the length of the longest initial segment avoiding the 123-pattern is equal to k.
1

%I #21 Sep 08 2022 08:45:13

%S 1,0,2,0,1,5,0,4,6,14,0,20,30,28,42,0,120,180,168,120,132,0,840,1260,

%T 1176,840,495,429,0,6720,10080,9408,6720,3960,2002,1430,0,60480,90720,

%U 84672,60480,35640,18018,8008,4862,0,604800,907200,846720,604800,356400,180180,80080,31824,16796

%N Triangle read by rows: T(n,k) is the number of permutations p of [n] in which the length of the longest initial segment avoiding the 123-pattern is equal to k.

%C Row sums are the factorial numbers (A000142).

%C Diagonal is A000108.

%C T(n,n-1) = binomial(2n-2,n-3) = A002694(n-1).

%H G. C. Greubel, <a href="/A092583/b092583.txt">Rows n = 1..100 of triangle, flattened</a>

%H E. Deutsch and W. P. Johnson, <a href="http://www.jstor.org/stable/3219101">Create your own permutation statistics</a>, Math. Mag., 77, 130-134, 2004.

%H R. Simion and F. W. Schmidt, <a href="https://doi.org/10.1016/S0195-6698(85)80052-4">Restricted permutations</a>, European J. Combin., 6, 383-406, 1985.

%F T(n,k) = n!*binomial(2k, k-2)/(k+1)! for k < n;

%F T(n,n) = binomial(2n, n)/(n+1) = A000108(n).

%e T(4,3) = 6 because 1324, 1423, 2134, 2314, 3124 and 4123 are the only permutations of [4] in which the length of the longest initial segment avoiding the 123-pattern is equal to 3 (i.e., the first three entries do not contain the 123-pattern but all 4 of them do).

%e Triangle starts:

%e 1;

%e 0, 2;

%e 0, 1, 5;

%e 0, 4, 6, 14;

%e 0, 20, 30, 28, 42;

%e 0, 120, 180, 168, 120, 132;

%e 0, 840, 1260, 1176, 840, 495, 429;

%e ...

%t T[n_,k_]:= If[k==n, CatalanNumber[n], n!*Binomial[2*k,k-2]/(k+1)!]; Table[T[n,k], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Jul 22 2019 *)

%o (PARI) tabl(nn) = {for (n=1, nn, for (k=1, n-1, print1(n!*binomial(2*k, k-2)/(k+1)!, ", ");); print1(binomial(2*n, n)/(n+1), ", "); print(););} \\ _Michel Marcus_, Jul 16 2013

%o (Magma)

%o T:= func< n,k | k eq n select Catalan(n) else Factorial(n)*Binomial(2*k, k-2)/Factorial(k+1) >;

%o [T(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Jul 22 2019

%o (Sage)

%o def T(n, k):

%o if (k==n): return catalan_number(n)

%o else: return factorial(n)*binomial(2*k, k-2)/factorial(k+1)

%o [[T(n,k) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Jul 22 2019

%o (GAP)

%o T:= function(n,k)

%o if k=n then return Binomial(2*n, n)/(n + 1);

%o else return Factorial(n)*Binomial(2*k, k-2)/Factorial(k+1);

%o fi;

%o end;

%o Flat(List([1..12], n-> List([1..n], k-> T(n,k) ))); # _G. C. Greubel_, Jul 22 2019

%Y Cf. A000142, A000108, A002694.

%K nonn,tabl

%O 1,3

%A _Emeric Deutsch_ and Warren P. Johnson (wjohnson(AT)bates.edu), Apr 10 2004