login
a(n) = Sum_{i+j+k=n, 0<=i<=j<=k<=n} (n+2k)!/(i! * j! * (3*k)!).
2

%I #17 Oct 31 2021 03:13:52

%S 1,1,3,24,71,366,2142,8128,40063,223182,919600,4477496,24423998,

%T 104469379,508145588,2726623094,11936904927,58101760966,307770506832,

%U 1369729219470,6671075408724,34985537652681,157621462924548

%N a(n) = Sum_{i+j+k=n, 0<=i<=j<=k<=n} (n+2k)!/(i! * j! * (3*k)!).

%H Vaclav Kotesovec, <a href="/A092468/b092468.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..200 from Seiichi Manyama)

%H Vaclav Kotesovec, <a href="/A092468/a092468.jpg">Plot a(n+1)/a(n) for n = 1..999</a>

%F Conjecture: a(n+1)/a(n) tends to (73 + 6*sqrt(87))^(1/3)/3 + 13/(3*(73 + 6*sqrt(87))^(1/3)) + 7/3 = 4.875129794... - _Vaclav Kotesovec_, Oct 31 2021

%o (PARI) a(n)=sum(i=0,n,sum(j=0,i,sum(k=0,j,if(i+j+k-n,0,(n+2*k)!/i!/j!/(3*k)!))))

%Y Cf. A007583, A092469.

%K nonn

%O 0,3

%A _Benoit Cloitre_, Mar 25 2004