login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

n^(1/a(n)) is the closest to an integer on 2..n with a(n) minimal.
0

%I #3 Mar 31 2012 13:21:57

%S 2,2,2,2,3,3,3,2,3,4,4,4,4,4,4,4,4,4,4,4,5,5,2,2,3,3,3,5,5,5,5,5,5,5,

%T 2,5,5,5,5,41,42,43,44,45,46,47,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,

%U 6,6,6,6,6,6,6,6,6,4,4,4,4,4,4,4,4,4,4,4,87,88,89,90,91,92,93,94,95,96,97

%N n^(1/a(n)) is the closest to an integer on 2..n with a(n) minimal.

%C The sequence is conjectured to tend to n, as n^(1/n)->1. Is the density of nonnegative entries 0?

%e 5^(1/2)= 2.236067977499789696409173668

%e 5^(1/3)= 1.709975946676696989353108872

%e 5^(1/4)= 1.495348781221220541911898994

%e 5^(1/5)= 1.379729661461214832390063464

%e 5^(1/2) is closest to an integer, so a(5)=2.

%o (PARI) { for (i=2,100, xj=1;xm=0.5; for (j=2,i, x=i^(1/j)*1.0; xf=x-floor(x); if (xf<xm, xm=xf;xj=j); if (1-xf<xm, xm=1-xf;xj=j)); print1(","xj)) }

%K nonn

%O 2,1

%A _Jon Perry_, Mar 19 2004