login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A092349
a(n) = sigma_3(n) - sigma_2(n).
1
0, 4, 18, 52, 100, 202, 294, 500, 666, 1004, 1210, 1834, 2028, 2846, 3268, 4340, 4624, 6358, 6498, 8652, 9132, 11378, 11638, 15530, 15100, 18932, 19620, 24062, 23548, 30452, 28830, 36084, 36076, 42776, 42044, 53350, 49284, 59930, 59844, 71500, 67240, 84188
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} k^2*(k - 1)*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 17 2017
From Amiram Eldar, Jan 01 2025: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-3) - zeta(s-2)).
Sum_{k=1..n} a(k) ~ (zeta(4)/4) * n^4. (End)
MATHEMATICA
a[n_] := Subtract @@ DivisorSigma[{3, 2}, n]; Array[a, 50] (* Amiram Eldar, Jan 01 2025 *)
PROG
(PARI) a(n) = my(f = factor(n)); sigma(f, 3) - sigma(f, 2); \\ Amiram Eldar, Jan 01 2025
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 20 2004
STATUS
approved