Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 20 2020 00:42:23
%S 0,7,56,418,3091,22845,168803,1247297,9216353,68100150,503195828,
%T 3718142207,27473561357,203003686105,1500005624923,11083625711270,
%U 81897532160124,605145459495140,4471453748222756,33039822589391675
%N a(n) = smallest m such that value of odd harmonic series Sum_{j=0..m} 1/(2j+1) is >= n.
%H Vincenzo Librandi, <a href="/A092318/b092318.txt">Table of n, a(n) for n = 1..1000</a> (127 terms corrected by Gerhard Kirchner)
%F a(n) = floor(exp(2*n-gamma)/4+1/8), for all n > 1. - _M. F. Hasler_ and _Robert G. Wilson v_, Jan 22 2017
%F a(n) = floor(exp(2*n-gamma)/4), for all n > 1, see correction in A092315, _Gerhard Kirchner_, Jul 25 2020
%t a[n_] := Floor[(Exp[2 n - EulerGamma] + 1/2)/4]; a[1] = 0; Array[a, 20] (* _Robert G. Wilson v_, Jan 25 2017 *)
%o (PARI) A092318=n->floor(exp(2*n-Euler)/4+1/8)-(n<2) \\ Cf. comments in A092315. - _M. F. Hasler_, Jan 24 2017
%Y Apart from first term, same as A092315. Equals (A092317-1)/2.
%Y Cf. A074599, A025547.
%Y Cf. A281355 (= a(n) + 1) for a variant.
%K nonn
%O 1,2
%A _N. J. A. Sloane_, Feb 16 2004
%E More terms (computed from A092317) from _M. F. Hasler_, Jan 22 2017
%E a(17) corrected by _Gerhard Kirchner_, Jul 26 2020