Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Feb 11 2021 23:02:09
%S 1,0,0,1,2,5,6,11,13,17,23,29,34,47,64,74,107,136,185,233,308,392,518,
%T 637,814,1002,1272,1560,1912,2339,2863,3475,4212,5123,6147,7398,8935,
%U 10734,12843,15464,18382,22041,26249,31326,37213,44273,52375,62103,73376
%N Number of partitions of n such that the set of parts has an even number of elements.
%H Alois P. Heinz, <a href="/A092306/b092306.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = b(n, 1, 0, 1) with b(n, i, j, f) = if i<n then b(n-i, i, i, 1-f-(1-2*f)*0^(i-j)) + b(n, i+1, j, f) else (1-f-(1-2*f)*0^(i-j))*0^(i-n). - _Reinhard Zumkeller_, Feb 19 2004
%F G.f.: F(x)*G(x)/2, where F(x) = 1+Product(1-2*x^i, i=1..infinity) and G(x) = 1/Product(1-x^i, i=1..infinity).
%F a(n) = (A000041(n)+A104575(n))/2.
%F G.f. A(x) equals the main diagonal entries in the 2 X 2 matrix Product_{n >= 1} [1, x^n/(1 - x^n); x^n/(1 - x^n), 1] = [A(x), B(x); B(x), A(x)], where B(x) is the g.f. of A090794. - _Peter Bala_, Feb 10 2021
%e The partitions of five are: {{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}, The seven partitions have 1, 2, 2, 2, 2, 2 and 1 distinct parts respectively.
%e n=6 has A000041(6)=11 partitions: 6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1 and 1+1+1+1+1+1 with partition sets: {6}, {1,5}, {2,4}, {1,4}, {3}, {1,2,3}, {1,3}, {2}, {1,2}, {1,2} and {1}, six of them have an even number of elements, therefore a(6)=6.
%p b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0,
%p b(n, i-1, t) +add(b(n-i*j, i-1, 1-t), j=1..n/i)))
%p end:
%p a:= n-> b(n, n, 1):
%p seq(a(n), n=0..50); # _Alois P. Heinz_, Jan 29 2014
%t f[n_] := Count[ Mod[ Length /@ Union /@ IntegerPartitions[n], 2], 0]; Table[ f[n], {n, 0, 49}] (* _Robert G. Wilson v_, Feb 16 2004, updated by _Jean-François Alcover_, Jan 29 2014 *)
%o (Haskell)
%o import Data.List (group)
%o a092306 = length . filter even . map (length . group) . ps 1 where
%o ps x 0 = [[]]
%o ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
%o -- _Reinhard Zumkeller_, Dec 19 2013
%Y Cf. A060177, A002133, A027187, A090794.
%K nonn,easy
%O 0,5
%A _Vladeta Jovovic_, Feb 12 2004
%E More terms from _Robert G. Wilson v_, Feb 16 2004