login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sequence S_6 of the S_r family.
47

%I #97 Sep 08 2022 08:45:13

%S 0,1,6,25,96,361,1350,5041,18816,70225,262086,978121,3650400,13623481,

%T 50843526,189750625,708158976,2642885281,9863382150,36810643321,

%U 137379191136,512706121225,1913445293766,7141075053841,26650854921600,99462344632561,371198523608646

%N Sequence S_6 of the S_r family.

%C The r-family of sequences is S_r(n) = 2*(T(n,(r-2)/2) - 1)/(r-4) provided r is not equal to 4 and S_4(n) = n^2 = A000290(n). Here T(n,x) are Chebyshev's polynomials of the first kind. See their coefficient triangle A053120. See also the R. Stephan link for the explicit formula for s_k(n) for k not equal to 4 (Stephan's s_k(n) is identical with S_r(n)).

%C An integer n is in this sequence iff mutually externally tangent circles with radii n, n+1, n+2 have Soddy circles (i.e., circles tangent to all three) of rational radius. - _James R. Buddenhagen_, Nov 16 2005

%C This sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. It is the case P1 = 6, P2 = 8, Q = 1 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - _Peter Bala_, Mar 25 2014

%C a(n) is the block size of the (n-1)-th design in a sequence of multi-set designs with 2 blocks, see A335649. - _John P. McSorley_, Jun 22 2020

%H Hugo Pfoertner, <a href="/A092184/b092184.txt">Table of n, a(n) for n = 0..250</a>

%H Marco Abrate, Stefano Barbero, Umberto Cerruti, Nadir Murru, <a href="https://www.emis.de/journals/INTEGERS/papers/p38/p38.Abstract.html">Polynomial sequences on quadratic curves</a>, Integers, Vol. 15, 2015, #A38.

%H Peter Bala, <a href="/A100047/a100047.pdf">Linear divisibility sequences and Chebyshev polynomials</a>

%H Ioana-Claudia Lazăr, <a href="https://arxiv.org/abs/1904.06555">Lucas sequences in t-uniform simplicial complexes</a>, arXiv:1904.06555 [math.GR], 2019.

%H R. Stephan, <a href="http://www.ark.in-berlin.de/A001110.ps">Boring proof of a nonlinearity</a>

%H H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

%H H. C. Williams and R. K. Guy, <a href="http://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a> Integers, Volume 12A (2012) The John Selfridge Memorial Volume.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-5,1).

%F S_r type sequences are defined by a(0)=0, a(1)=1, a(2)=r and a(n-1)*a(n+1) = (a(n)-1)^2. This sequence emanates from r=6.

%F a(n) = 1/2*(-2 + (2+sqrt(3))^n + (2-sqrt(3))^n). - _Ralf Stephan_, Apr 14 2004

%F G.f.: x*(1+x)/(1 - 5*x + 5*x^2 - x^3) = x*(1+x)/((1-x)*(1 - 4*x + x^2)). [from the _Ralf Stephan_ link]

%F a(n) = T(n, 2)-1 = A001075(n)-1, with Chebyshev's polynomials T(n, 2) of the first kind.

%F a(n) = b(n) + b(n-1), n >= 1, with b(n):=A061278(n) the partial sums of S(n, 4) = U(n, 2) = A001353(n+1) Chebyshev's polynomials of the second kind.

%F An integer k is in this sequence iff k is nonnegative and (k^2 + 2*k)/3 is a square. - _James R. Buddenhagen_, Nov 16 2005

%F a(0)=0, a(1)=1, a(n+1) = 3 + floor(a(n)*(2+sqrt(3))). - Anton Vrba (antonvrba(AT)yahoo.com), Jan 16 2007

%F a(n) = 4*a(n-1) - a(n-2) + 2. - _Zerinvary Lajos_, Mar 09 2008

%F From _Peter Bala_, Mar 25 2014: (Start)

%F a(2*n) = 6*A001353(n)^2; a(2*n+1) = A001834(n)^2.

%F a(n) = u(n)^2, where {u(n)} is the Lucas sequence in the quadratic integer ring Z[sqrt(6)] defined by the recurrence u(0) = 0, u(1) = 1, u(n) = sqrt(6)*u(n-1) - u(n-2) for n >= 2.

%F Equivalently, a(n) = U(n-1,sqrt(6)/2)^2, where U(n,x) denotes the Chebyshev polynomial of the second kind.

%F a(n) = (1/2)*( ((sqrt(6) + sqrt(2))/2)^n - ((sqrt(6) - sqrt(2))/2)^n )^2.

%F a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -2; 1, 3] and T(n,x) denotes the Chebyshev polynomial of the first kind. Cf. A098306.

%F See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)

%F exp( Sum_{n >= 1} 2*a(n)*x^n/n ) = 1 + Sum_{n >= 1} A052530(n)*x^n. Cf. A001350. - _Peter Bala_, Mar 19 2015

%F E.g.f.: exp(2*x)*cosh(sqrt(3)*x) - cosh(x) - sinh(x). - _Stefano Spezia_, Oct 13 2019

%e a(3)=25 because a(1)=1 and a(2)=6 and a(1)*a(3) = 1*25 = (6-1)^2 = (a(2)-1)^2.

%p A092184 := proc(n)

%p option remember;

%p if n <= 1 then

%p n;

%p else

%p 4*procname(n-1)-procname(n-2)+2 ;

%p end if ;

%p end proc:

%p seq(A092184(n),n=0..10) ;# _Zerinvary Lajos_, Mar 09 2008

%t Table[Simplify[ -((2 + Sqrt[3])^n - 1)*((2 - Sqrt[3])^n - 1)]/2, {n, 0, 26}] (* _Stefan Steinerberger_, May 15 2007 *)

%t LinearRecurrence[{5,-5,1},{0,1,6},27] (* _Ray Chandler_, Jan 27 2014 *)

%t CoefficientList[Series[x (1 + x)/(1 - 5 x + 5 x^2 - x^3), {x, 0, 40}], x] (* _Vincenzo Librandi_, Oct 14 2015 *)

%o (PARI) Vec(x*(1+x)/(1 - 5*x + 5*x^2 - x^3) + O(x^50)) \\ _Michel Marcus_, Oct 14 2015

%o (Magma) [Floor(1/2*(-2+(2+Sqrt(3))^n+(2-Sqrt(3))^n)): n in [0..30]]; // _Vincenzo Librandi_, Oct 14 2015

%Y See A001110=S_36 for further references to S_r sequences.

%Y Other members of this r-family are: A007877 (r=2), |A078070| (r=3), A004146 (r=5), A054493 (r=7). A098306, A100047. A001353, A001834. A001350, A052530.

%K easy,nonn

%O 0,3

%A _Rainer Rosenthal_, Apr 03 2004

%E Extension and Chebyshev comments from _Wolfdieter Lang_, Sep 10 2004