Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 08 2022 08:45:13
%S 1,24,153,544,1425,3096,5929,10368,16929,26200,38841,55584,77233,
%T 104664,138825,180736,231489,292248,364249,448800,547281,661144,
%U 791913,941184,1110625,1301976,1517049,1757728,2025969,2323800,2653321,3016704
%N Figurate numbers based on the 24-cell (4-D polytope with Schlaefli symbol {3,4,3}).
%C This is the 4-dimensional regular convex polytope called the 24-cell, hyperdiamond or icositetrachoron.
%H Vincenzo Librandi, <a href="/A092181/b092181.txt">Table of n, a(n) for n = 1..1000</a>
%H Hyun Kwang Kim, <a href="http://dx.doi.org/10.1090/S0002-9939-02-06710-2">On Regular Polytope Numbers</a>, Proc. Amer. Math. Soc., 131 (2003), 65-75.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/24-Cell.html">24-Cell</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). [_R. J. Mathar_, Jun 21 2010]
%F a(n) = n^2*((3*n^2)-(4*n)+2).
%F a(n) = C(n+3,4) + 19 C(n+2,4) + 43 C(n+1,4) + 9 C(n,4).
%F a(n) = +5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). G.f.: x*(1+19*x+43*x^2+9*x^3)/(1-x)^5. [_R. J. Mathar_, Jun 21 2010]
%F a(n) = Sum_{k = 1..n} (k^3 + k^7)* binomial(n,k)/binomial(n+k,k). Cf. A034262 and A155977. - _Peter Bala_, Feb 12 2019
%e a(3)= 3^2*((3*3^2)-(4*3)+2) = 9*(27-12+2) = 9*17 = 153
%t Table[SeriesCoefficient[x (1 + 19 x + 43 x^2 + 9 x^3)/(1 - x)^5, {x, 0, n}], {n, 32}] (* _Michael De Vlieger_, Dec 14 2015 *)
%t LinearRecurrence[{5,-10,10,-5,1},{1,24,153,544,1425},40] (* _Harvey P. Dale_, May 25 2022 *)
%o (Magma) [n^2*((3*n^2)-(4*n)+2): n in [1..40]]; // _Vincenzo Librandi_, May 22 2011
%o (PARI) a(n) = n^2*(3*n^2-4*n+2); \\ _Michel Marcus_, Dec 14 2015
%Y Cf. A000332, A000583, A014820, A092182, A092183.
%K easy,nonn
%O 1,2
%A Michael J. Welch (mjw1(AT)ntlworld.com), Mar 31 2004