%I #27 Sep 08 2022 08:45:13
%S 5,7,13,17,43,53,67,97,113,127,137,157,167,193,223,283,487,547,563,
%T 613,617,643,647,743,773,937,1033,1187,1193,1277,1427,1453,1483,1543,
%U 1583,1627,1663,1733,1847,2027,2143,2297,2393,2437,2467,2477,2503,2617,2843
%N Primes p such that 2p+3 and 2p-3 are both prime.
%C Intersection of A023204 and A063908.
%C All numbers in this sequence end with 3 or 7 (except the first one, which is 5). See A136191 or A136192. - _Carlos Alves_, Dec 20 2007
%H K. D. Bajpai, <a href="/A092110/b092110.txt">Table of n, a(n) for n = 1..10000</a>
%e From _K. D. Bajpai_, Sep 08 2020: (Start)
%e 7 is a term because 2*7 + 3 = 17 and 2*7 - 3 = 11 are both prime.
%e 13 is a term because 2*13 + 3 = 29 and 2*13 - 3 = 23 are both prime.
%e (End)
%p select(p -> isprime(p) and isprime(2*p+3) and isprime(2*p-3), [seq(2*k+1, k=1..1000)]); # _K. D. Bajpai_, Sep 08 2020
%t Select[Prime@Range@1000,PrimeQ[2#-3]&&PrimeQ[2#+3]&] (* _Vladimir Joseph Stephan Orlovsky_, Apr 25 2011 *)
%o (Magma) [p: p in PrimesUpTo(10000)|IsPrime(2*p-3) and IsPrime(2*p+3)] // _Vincenzo Librandi_, Nov 16 2010
%Y Cf. A023204, A089531, A063908, A092109.
%Y Cf. A136191, A136192.
%K easy,nonn
%O 1,1
%A _Zak Seidov_, Feb 21 2004