login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092053
Denominators of the convergents of the continued fraction expansion [1;1/2,1/3,1/4,...,1/n,...].
2
1, 1, 7, 19, 53, 81, 823, 5359, 12923, 21877, 102061, 354883, 808865, 1433689, 25699639, 369784999, 817787423, 1487830821, 6512750579, 23917578595, 51908057021, 96040578001, 827937066989, 6166467806391, 13211837015707
OFFSET
1,3
COMMENTS
Numerators of convergents are A001902 (successive denominators of Wallis's product approximation to Pi/2). Sum of numerators and denominators equals powers of 2: A001902(n) + a(n) = 2^A092054(n).
LINKS
FORMULA
a(n) = 2^A092054(n) - A001902(n).
MAPLE
R:= gfun:-rectoproc({r(n) = (r(n - 1))/(n - 1) + r(n - 2), r(1) = 0, r(2) = 1}, r(n), remember):
seq(numer(R(n)), n=2..30); # Robert Israel, May 14 2017
MATHEMATICA
Numerator[RecurrenceTable[{r[n] == (r[n - 1])/(n - 1) + r[n - 2], r[1] == 0, r[2] == 1}, r, {n, 2, 30}]] (* Terry D. Grant, May 07 2017, fixed by Vaclav Kotesovec, Aug 14 2021 *)
Table[Numerator[ContinuedFractionK[1, 1/k , {k, 1, n}]], {n, 1, 30}] (* Vaclav Kotesovec, Aug 14 2021 *)
PROG
(PARI) a(n)=local(A); CF=contfracpnqn(vector(n, k, 1/k)); A=denominator(CF[1, 1]/CF[2, 1])
CROSSREFS
Sequence in context: A155414 A155374 A155272 * A072630 A002714 A126361
KEYWORD
frac,nonn
AUTHOR
Paul D. Hanna, Feb 19 2004
STATUS
approved