login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are congruent to {2, 10} mod 12.
19

%I #75 Nov 24 2024 01:51:20

%S 2,10,14,22,26,34,38,46,50,58,62,70,74,82,86,94,98,106,110,118,122,

%T 130,134,142,146,154,158,166,170,178,182,190,194,202,206,214,218,226,

%U 230,238,242,250,254,262,266,274,278,286,290,298,302,310,314,322,326,334

%N Numbers that are congruent to {2, 10} mod 12.

%C Numbers divisible by 2 but not by 3 or 4. - _Robert Israel_, Apr 24 2015

%C For n > 1, a(n) is representable as a sum of four but no fewer consecutive nonnegative integers, i.e., 10 = 1 + 2 + 3 + 4, 14 = 2 + 3 + 4 + 5, 22 = 4 + 5 + 6 + 7, etc. (see A138591). - _Martin Renner_, Mar 14 2016

%C Essentially the same as A063221. - _Omar E. Pol_, Aug 16 2023

%H David Lovler, <a href="/A091999/b091999.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n) = 2*A007310(n).

%F a(n) = A186424(n) - A186424(n-2), for n > 1.

%F a(n) = 12*(n-1) - a(n-1), with a(1)=2. - _Vincenzo Librandi_, Nov 16 2010

%F G.f.: 2*x*(1+4*x+x^2) / ( (1+x)*(x-1)^2 ). - _R. J. Mathar_, Oct 08 2011

%F a(n) = a(n-1) + a(n-2) - a(n-3); a(1)=2, a(2)=10, a(3)=14. - _Harvey P. Dale_, Jun 24 2013

%F a(n) = 6*n - 3 + (-1)^n. - _Wesley Ivan Hurt_, Apr 23 2015

%F E.g.f.: 2 + (6*x - 2)*cosh(x) + 2*(3*x - 2)*sinh(x). - _Stefano Spezia_, May 09 2021

%F Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)). - _Amiram Eldar_, Dec 13 2021

%F E.g.f.: 2 + (6*x - 3)*exp(x) + exp(-x). - _David Lovler_, Aug 08 2022

%F a(n) = A063221(n), n > 1. - _Omar E. Pol_, Aug 15 2023

%F From _Amiram Eldar_, Nov 24 2024: (Start)

%F Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(2) (A002193).

%F Product_{n>=1} (1 + (-1)^n/a(n)) = 2*sin(Pi/12) (A101263). (End)

%p A091999:=n->6*n-3+(-1)^n: seq(A091999(n), n=1..100); # _Wesley Ivan Hurt_, Apr 23 2015

%t Flatten[#+{2,10}&/@(12*Range[0,30])] (* or *) LinearRecurrence[{1,1,-1},{2,10,14},60] (* _Harvey P. Dale_, Jun 24 2013 *)

%o (Haskell)

%o a091999 n = a091999_list !! (n-1)

%o a091999_list = 2 : 10 : map (+ 12) a091999_list

%o -- _Reinhard Zumkeller_, Jan 21 2013

%o (Magma) [6*n-3+(-1)^n : n in [1..100]]; // _Wesley Ivan Hurt_, Apr 23 2015

%o (PARI) a(n) = 6*n - 3 + (-1)^n \\ _David Lovler_, Jul 16 2022

%Y Second row of A092260.

%Y Cf. A109761 (subsequence).

%Y Cf. A002193, A007310, A101263, A138591, A186424.

%Y Cf. A017545, A017641, A063221.

%K nonn,easy

%O 1,1

%A _Ray Chandler_, Feb 21 2004