login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: (1+x^3)*(1+x^5)*(1+x^6)/((1-x^4)*(1-x^5)*(1-x^6)).
0

%I #14 Jan 30 2018 18:57:37

%S 1,0,0,1,1,2,2,1,3,4,4,5,5,6,8,9,9,10,12,13,15,16,16,19,21,22,24,25,

%T 27,30,32,33,35,38,40,43,45,46,50,53,55,58,60,63,67,70,72,75,79,82,86,

%U 89,91,96,100,103,107,110,114,119,123,126,130,135,139,144,148,151,157,162,166

%N G.f.: (1+x^3)*(1+x^5)*(1+x^6)/((1-x^4)*(1-x^5)*(1-x^6)).

%C Let G = G_2(q) or ^3D_4(q) with q == 1 mod 4. The Poincaré series [or Poincare series] (or Molien series) for G is independent of q and is given here.

%D A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 242.

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1,1,-1,0,-1,1).

%F G.f.: -(x^4-x^3+x^2-x+1)*(x^4-x^2+1) / ( (1+x+x^2)*(x^4+x^3+x^2+x+1)*(x-1)^3 ). - _R. J. Mathar_, Sep 27 2014

%t CoefficientList[Series[(1+x^3)*(1+x^5)*(1+x^6)/((1-x^4)*(1-x^5)*(1-x^6)),{x,0,80}],x] (* or *) LinearRecurrence[{1,0,1,-1,1,-1,0,-1,1},{1,0,0,1,1,2,2,1,3},80] (* _Harvey P. Dale_, Feb 19 2017 *)

%K nonn,easy

%O 0,6

%A _N. J. A. Sloane_, Mar 15 2004