login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes that remain prime when their leading digit in binary representation is replaced by 0.
8

%I #21 Jul 11 2021 07:21:44

%S 7,11,13,19,23,29,37,43,61,67,71,83,101,107,131,139,151,157,181,199,

%T 211,229,241,263,269,293,317,353,359,383,419,449,467,479,523,541,571,

%U 601,613,619,643,661,691,709,739,751,769,823,829,859,991,1021,1031,1061

%N Primes that remain prime when their leading digit in binary representation is replaced by 0.

%C A053645(a(n)) is prime.

%C Primes p such that p - 2^floor(log_2(p)) is prime - _T. D. Noe_, Apr 08 2011

%H T. D. Noe, <a href="/A091932/b091932.txt">Table of n, a(n) for n = 1..1000</a>

%F A118953(A049084(a(n))) = 1; subsequence of A065380. - _Reinhard Zumkeller_, May 07 2006

%e A000040(12)=37 --> '100101' --> '[1]00101' --> '[0]00101' --> '101' --> 5, therefore 37 is a term.

%t Select[Prime[Range[100]], PrimeQ[# - 2^Floor[Log[2, #]]] &] (* _T. D. Noe_, Apr 08 2011 *)

%t Select[Prime[Range[200]],PrimeQ[FromDigits[Rest[ IntegerDigits[ #,2]],2]]&] (* _Harvey P. Dale_, Apr 08 2016 *)

%o (Python)

%o from sympy import isprime, primerange

%o def ok(p): return isprime((1 << (p.bit_length()-1)) ^ p)

%o def aupto(lim): return [p for p in primerange(1, lim+1) if ok(p)]

%o print(aupto(1061)) # _Michael S. Branicky_, Jul 11 2021

%Y Cf. A091931.

%Y Cf. A118958.

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Feb 14 2004