%I #11 Sep 08 2019 01:26:31
%S 1,0,11,66,517,3828,28655,214038,1599433,11951016,89299859,667260330,
%T 4985860429,37255026204,278374621943,2080053019902,15542438960785,
%U 116135216983632,867778130470427,6484156169642514,48450496453029781
%N Expansion of (1-6x)/(1-6x-11x^2).
%C Let the generating matrix of the Golay G_24 code be [I|A]. Then a(n)=(A^n)_1,1.
%D S. Roman, Introduction to Coding and Information Theory, Springer-Verlag, 1996, p. 224
%H Harvey P. Dale, <a href="/A091929/b091929.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,11).
%F a(n) = (1/2 - 3*sqrt(5)/20)*(3 + 2*sqrt(5))^n + (3 - 2*sqrt(5))^n*(1/2 + 3*sqrt(5)/20).
%t CoefficientList[Series[(1-6x)/(1-6x-11x^2),{x,0,30}],x] (* or *) LinearRecurrence[{6,11},{1,0},30] (* _Harvey P. Dale_, Apr 25 2018 *)
%Y Cf. A091927, A015553.
%K easy,nonn
%O 0,3
%A _Paul Barry_, Feb 16 2004