login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: a(n,k) = C(n,k)*(2^(n-k) - 1) for k<n, a(n,k) = 0 for k >= n, where k=0..max(n-1,0).
1

%I #28 Feb 06 2022 06:52:07

%S 0,1,3,2,7,9,3,15,28,18,4,31,75,70,30,5,63,186,225,140,45,6,127,441,

%T 651,525,245,63,7,255,1016,1764,1736,1050,392,84,8,511,2295,4572,5292,

%U 3906,1890,588,108,9,1023,5110,11475,15240,13230,7812,3150,840,135,10,2047

%N Triangle read by rows: a(n,k) = C(n,k)*(2^(n-k) - 1) for k<n, a(n,k) = 0 for k >= n, where k=0..max(n-1,0).

%C Row lengths are 1,1,2,3,4,... = A028310. - _M. F. Hasler_, Jul 21 2012

%C Rows: Sum of the n-th row = A001047(n); Sum of the n-th row excluding column 0 = A028243(n+1). Columns: a(n,0) = A000225(n); a(n,1) = A058877(n). Diagonals: a(n,n-2) = A045943(n-1). Also note that the sums of the antidiagonals = A006684.

%C As an infinite lower triangular matrix * the Bernoulli numbers as a vector (Cf. A027641) = the natural numbers: [1, 2, 3, ...]. The same matrix * the Bernoulli number version starting [1, 1/2, 1/6, ...] = A001787: (1, 4, 12, 32, ...). - _Gary W. Adamson_, Mar 13 2012

%F For k>=n, a(n, k) = 0; for k < n, a(n, k) = C(n, k) * (2^(n-k) - 1) = Sum [C(n,k) * C(n-k, m), {m=1 to n-k}]. [Formula corrected Aug 22 2006]

%F The triangle (1; 3,2; 7,9,3; ...) = A007318^2 - A007318, then delete the right border of zeros. - _Gary W. Adamson_, Nov 16 2007

%F O.g.f.: 1/( (1 - (1 + x)*t)*(1 - (2 + x)*t) ) = 1 + (3 + 2*x)*t + (7 + 9*x + 3*x^2)*t^2 + .... - _Peter Bala_, Jul 16 2013

%e Triangle begins

%e 0;

%e 1;

%e 3, 2;

%e 7, 9, 3;

%e 15, 28, 18, 4;

%e 31, 75, 70, 30, 5;

%e 63, 186, 225, 140, 45, 6;

%e ...

%e a(5,3) = 30 because C(5,3) = 10, 2^(5 - 3) - 1 = 3 and 10 * 3 = 30.

%Y Cf. A007318, A038207.

%Y Cf. A001787, A027641, A027642.

%K easy,nonn,tabf

%O 0,3

%A _Ross La Haye_, Mar 10 2004

%E More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004