login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091825
Integers of the form ((k-1)!*2^(k-1) + 1)/k.
1
2, 3, 77, 6583, 337808291, 150922350277, 80658585770586353, 88333886984966359579, 204973945587849174028466087, 2822166959135536313284193618131862069, 9187519016643816926988413546511855483871
OFFSET
0,1
COMMENTS
If p is prime and gcd(q,p)=1 then p divides (p-1)!*q^(p-1) + 1.
EXAMPLE
a(1) = ((1-1)!*2^(1-1) + 1)/1 = 2
((2-1)!*2^(2-1) + 1)/2 = 3/2 is not an integer
a(2) = ((3-1)!*2^(3-1) + 1)/3 = 3
MATHEMATICA
Select[Table[((n-1)! 2^(n-1)+1)/n, {n, 35}], IntegerQ] (* Harvey P. Dale, Mar 24 2011 *)
PROG
(PARI) for (i=1, 100, if(denominator(((i-1)!*2^(i-1)+1)/i)==1, print(((i-1)!*2^(i-1)+1)/i)));
CROSSREFS
Cf. A091824.
Sequence in context: A371269 A377690 A306195 * A166091 A371141 A370993
KEYWORD
nonn
AUTHOR
Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Mar 09 2004
EXTENSIONS
Additional term provided by Harvey P. Dale, Mar 24 2011
STATUS
approved