login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(2*numerator(H(p-3)) -3*denominator(H(p-3)))/p with H(m) = 1 + 1/2 + 1/3 + ...+ 1/m.
0

%I #8 Mar 11 2014 01:32:13

%S -1,0,2,62,554,74258,142682,2830946,1448977246,12576415426,

%T 1857881203154,64634117421826,62771945063582,164497840779865642,

%U 350742295126606034006,5774653629556529218142,5647762835059481932498,12720214895833193424471634

%N (2*numerator(H(p-3)) -3*denominator(H(p-3)))/p with H(m) = 1 + 1/2 + 1/3 + ...+ 1/m.

%C Proposed by _Leroy Quet_.

%C _Leroy Quet_ conjectures that the terms are always integral. This is true for p < 3*10^4.

%F a(n) = (2*A001008(p-3) - 3*A002805(p-3))/p, p prime >= 5.

%o (PARI) H(n)=sum(i=1,n,1/i); forprime(p=3,100,print1((2*numerator(H(p-3))-3*denominator(H(p-3)))/p,","))

%K sign

%O 1,3

%A Mohammed Bouayoun (bouyao(AT)wanadoo.fr) and _Ralf Stephan_, Mar 07 2004