Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #74 Dec 23 2024 14:53:42
%S 0,1,34,1155,39236,1332869,45278310,1538129671,52251130504,
%T 1775000307465,60297759323306,2048348816684939,69583562007964620,
%U 2363792759454112141,80299370259431848174,2727814796061228725775,92665403695822344828176,3147895910861898495432209
%N a(n) = Pell(4n) / Pell(4).
%C A000129(k*n)/A000129(k) = ((sqrt(2)-1)^k(-1)^k-(sqrt(2)+1)^k)((sqrt(2)-1)^(k*n)(-1)^(k*n)-(sqrt(2)+1)^(k*n))/((sqrt(2)-1)^(2k)+(sqrt(2)+1)^(2k)-2(-1)^k).
%C All squares of the form (3m-1)^3 + (3m)^3 + (3m+1)^3 (cf. A116108) are given for m = 24 b, where b is a square of this sequence. From Ribenboim & McDaniel, it follows there are no squares > 1 in this sequence. - _M. F. Hasler_, Jun 05 2007
%C A divisibility sequence, cf. R. K. Guy's post to the SeqFan list. - _M. F. Hasler_, Feb 05 2013
%C a(n) gives all nonnegative solutions of the Pell equation b(n)^2 - 32*(3*a(n))^2 = +1, together with b(n) = A056771(n). - _Wolfdieter Lang_, Mar 09 2019
%H M. F. Hasler, <a href="/A091761/b091761.txt">Table of n, a(n) for n = 0..99</a>
%H R. K. Guy, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2013-February/010759.html">A new sequence</a>, post to the SeqFan list, Feb 05 2013.
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H Paulo Ribenboim and Wayne L. McDaniel, <a href="http://dx.doi.org/10.1006/jnth.1996.0068">The Square Terms in Lucas Sequences</a>, Journal of Number Theory 58, 104-123 (1996).
%H <a href="/index/Di#divseq">Index to divisibility sequences</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (34,-1).
%F G.f.: x/(1-34*x+x^2).
%F a(n) = A000129(4n)/A000129(4).
%F a(n) = ((1+sqrt(2))^(4n) - (1-sqrt(2))^(4n))*sqrt(2)/48.
%F From _M. F. Hasler_, Jun 05 2007: (Start)
%F a(n) = n (mod 2^m) for any m >= 0.
%F a(n) = sinh(4*n*log(sqrt(2)+1))/(12*sqrt(2)).
%F a(n) = A[1,1], first element of the 2 X 2 matrix A = (34,1;-1,0)^(n-1). (End)
%F a(n) = 34*a(n-1) - a(n-2); a(0)=0, a(1)=1. - _Philippe Deléham_, Nov 03 2008
%F A029547(n) = a(n+1). - _M. F. Hasler_, Feb 05 2013
%F a(n) = sqrt((A056771(n)^2 - 1)/(32*9)), n >= 0. See the Pell remark above. - _Wolfdieter Lang_, Mar 11 2019
%F E.g.f.: exp(17*x)*sinh(12*sqrt(2)*x)/(12*sqrt(2)). - _Stefano Spezia_, Apr 16 2023
%F a(n) = A002965(8*n)/12. - _Gerry Martens_, Jul 14 2023
%p with (combinat):seq(fibonacci(4*n,2)/12, n=0..17); # _Zerinvary Lajos_, Apr 21 2008
%t LinearRecurrence[{34,-1}, {0,1}, 20] (* _G. C. Greubel_, Mar 11 2019 *)
%o (PARI) A091761(n, x=[ -1,17],A=[17,72*4;1,17]) = vector(n,i,(x*=A)[1]) \\ _M. F. Hasler_, May 26 2007
%o (PARI) A091761(n)=([34,1;-1,0]^(n-1))[1,1] \\ _M. F. Hasler_, Jun 05 2007
%o (Sage) [lucas_number1(n,34,1) for n in range(0, 16)]# _Zerinvary Lajos_, Nov 07 2009
%o (Magma) I:=[0,1]; [n le 2 select I[n] else 34*Self(n-1)-Self(n-2): n in [1..20]]; // _G. C. Greubel_, Mar 11 2019
%Y A029547 is an essentially identical sequence, cf. formula.
%Y Cf. A000129, A001109, A002965, A029547, A041085, A056771, A116108.
%K easy,nonn
%O 0,3
%A _Paul Barry_, Feb 06 2004