login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array read by rows: Greatest common divisors of values of the partition function P: T(n,k) = gcd(P(n), P(k)), 0 <= k < n.
3

%I #13 May 10 2020 03:30:39

%S 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,5,1,1,1,1,2,1,1,1,

%T 11,1,1,1,2,3,5,1,1,15,2,1,1,2,3,1,7,1,3,2,6,1,1,2,1,1,7,1,1,2,2,14,1,

%U 1,1,1,1,7,11,1,11,1,7,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,5,1,1,15,1

%N Triangular array read by rows: Greatest common divisors of values of the partition function P: T(n,k) = gcd(P(n), P(k)), 0 <= k < n.

%H Amiram Eldar, <a href="/A091717/b091717.txt">Table of n, a(n) for n = 1..11175</a>, rows 1..150 in flattened form.

%F A091718(n) = Max_{k=0..n-1} T(n,k);

%F T(n,0) = T(n,1) = 1; T(n,n-1) = A091719(n-1).

%e Triangle begins:

%e 1

%e 1, 1

%e 1, 1, 1

%e 1, 1, 1, 1

%e 1, 1, 1, 1, 1

%e 1, 1, 1, 1, 1, 1

%e 1, 1, 1, 3, 5, 1, 1

%e 1, 1, 2, 1, 1, 1, 11, 1

%e ...

%t m = 15; p = PartitionsP[Range[0, m]]; Table[GCD[p[[i]], p[[j]]], {i, 1, m}, {j, 1, i - 1}] // Flatten (* _Amiram Eldar_, May 10 2020 *)

%Y Cf. A000041, A091718, A091719.

%K nonn,tabl

%O 1,25

%A _Reinhard Zumkeller_, Feb 01 2004