login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of classes of compositions of n equivalent under reflection or cycling.
5

%I #45 Nov 07 2020 11:36:27

%S 1,2,3,5,7,12,17,29,45,77,125,223,379,686,1223,2249,4111,7684,14309,

%T 27011,50963,96908,184409,352697,675187,1296857,2493725,4806077,

%U 9272779,17920859,34669601,67159049,130216123,252745367,490984487,954637557,1857545299

%N Number of classes of compositions of n equivalent under reflection or cycling.

%C Equivalently, the number of radial cutting patterns of a (maximally symmetric) circular cake such that all resulting pieces are a multiple of 1/n of the whole. - _Peter Munn_, Oct 27 2020

%H Alois P. Heinz, <a href="/A091696/b091696.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A000029(n) - 1.

%F a(n) = A056342(n) + 1.

%F G.f.: ( Sum_{n>=1} phi(n)*log(2+1/(-1+x^n))/n + (1-1x^2+x^3)/((x-1)*(1-2*x^2)) )/(-2). - _Herbert Kociemba_, Dec 04 2016

%e 7 has 15 partitions and 64 compositions. Compositions can be mapped to other compositions by reflection, cycling, or both, e.g., {1,2,4} -> {4,2,1} (reflection), {2,4,1} (cycling), or {1,4,2} (both); this defines the equivalence relation used. The number of equivalence classes so defined is 2 greater than the number of partitions because only {3,1,2,1} and {2,1,2,1,1} (and their equivalents) cannot be mapped to the conventionally stated forms of partitions (here, {3,2,1,1} and {2,2,1,1,1} respectively). So a(7) = 15 + 2 = 17.

%p with(numtheory):

%p a:= n-> add(phi(d)*2^(n/d)/(2*n), d=divisors(n))

%p +`if`(irem(n, 2)=0, 2^(n/2-1) +2^(n/2-2), 2^((n-1)/2)) -1:

%p seq(a(n), n=1..40); # _Alois P. Heinz_, Oct 20 2012

%t Needs["Combinatorica`"]

%t nn=40;Apply[Plus,Table[CoefficientList[Series[CycleIndex[DihedralGroup[n], s]/.Table[s[i]->x^i/(1-x^i),{i,1,nn}],{x,0,nn}],x],{n,1,nn}]] (* _Geoffrey Critzer_, Oct 18 2012 *)

%t mx:=50;CoefficientList[Series[(Sum[(EulerPhi[n] Log[2+1/(-1+x^n)])/n,{n,1,mx}]+(1-1x^2+ x^3)/((x-1) (1-2 x^2)))/(-2),{x,0,mx}],x] (* _Herbert Kociemba_, Dec 04 2016 *)

%t a[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#) & ]/(2*n) - 1; Array[a, 37] (* _Jean-François Alcover_, Nov 05 2017 *)

%Y Cf. A000029, A056342.

%K nonn

%O 1,2

%A _Neil Fernandez_, Jan 29 2004

%E More terms from _Sean A. Irvine_, Feb 09 2012