Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 17 2018 20:39:47
%S 4,19,108,687,4766,35139,267486,2083814,16531372,133059504,1082995490,
%T 8896945667,73651718719,613664827254
%N Number of primes less than 10^n which do not contain the digit 9.
%F Number of primes less than 10^n after removing any primes with at least one digit 9.
%F a(n) = A006880(n) - A091710(n).
%F a(n) <= max(4,24*(9^(n-2))) <= 1 + (9^n)/3 (see formula in A091634). - _Chai Wah Wu_, Sep 17 2018
%e a(2) = 19 because of the 25 primes less than 10^2, 6 have at least one digit 9; 25-6 = 19.
%t NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 9] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* _Robert G. Wilson v_, Feb 02 2004 *)
%Y Cf. A091634, A091635, A091636, A091637, A091638, A091639, A091640, A091641, A091642.
%K more,nonn,base
%O 1,1
%A _Enoch Haga_, Jan 30 2004
%E Edited and extended by _Robert G. Wilson v_, Feb 02 2004
%E a(9)-a(12) from _Donovan Johnson_, Feb 14 2008
%E a(13) from _Robert Price_, Nov 08 2013
%E a(14) from _Giovanni Resta_, Mar 20 2017