login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Poincaré series [or Poincare series] of the preprojective algebra of an extended Dynkin diagram of type D_4.
8

%I #39 Aug 25 2024 20:22:45

%S 5,8,15,16,25,24,35,32,45,40,55,48,65,56,75,64,85,72,95,80,105,88,115,

%T 96,125,104,135,112,145,120,155,128,165,136,175,144,185,152,195,160,

%U 205,168,215,176,225,184,235,192,245,200,255,208

%N Poincaré series [or Poincare series] of the preprojective algebra of an extended Dynkin diagram of type D_4.

%C a(n) is also the number of orbits of length n for T^2, if T is a map with n orbits of length n. - _Thomas Ward_, Apr 08 2009

%D I. Reiten, Dynkin diagrams and the representation theory of algebras, Notices of the AMS, May 1997, Vol. 44, Number 5.

%H Harvey P. Dale, <a href="/A091574/b091574.txt">Table of n, a(n) for n = 0..1000</a>

%H Apisit Pakapongpun and Thomas Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Ward/ward17.html">Functorial orbit counting</a>, Journal of Integer Sequences, 12 (2009) Article 09.2.4.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,-1)

%F a(n) = 5*(2*n+1) if n even, 4*(n+1) if n odd.

%F G.f.: (5+8*x+5*x^2)/(1-x^2)^2.

%F a(n) = (1/n)*Sum_{d|n} mobius(n/d)*sigma_2(2*d). - _Thomas Ward_, Apr 08 2009

%e a(2) = (1/2)*mu(2)*sigma_2(2)+(1/2)*mu(1)*sigma_2(4) = 8. - _Thomas Ward_, Apr 08 2009

%t CoefficientList[ Series[ (5 + 8x + 5x^2) / (1 - 2x^2 + x^4), {x, 0, 51}], x] (* _Jean-François Alcover_, Dec 02 2011 *)

%t With[{nn=40},Riffle[10*Range[nn]-5,8*Range[nn]]] (* or *) LinearRecurrence[ {0,2,0,-1},{5,8,15,16},80] (* _Harvey P. Dale_, Oct 30 2013 *)

%o (PARI) (1/n)*sumdiv(n,d,moebius(n/d)*sumdiv(2*d,e,e^2)) \\ _Thomas Ward_, Apr 08 2009

%Y Cf. A091571, A091572, A091573, A091575, A091576, A091577.

%K easy,nonn

%O 0,1

%A _Paul Boddington_, Jan 22 2004