login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Second column (k=3) sequence of array A078740 ((3,2)-Stirling2) divided by 6.
1

%I #7 Jul 27 2022 08:47:36

%S 1,28,960,43200,2520000,186278400,17069875200,1902071808000,

%T 253487646720000,39833773056000000,7291173820170240000,

%U 1538106259064094720000,370502654756909875200000

%N Second column (k=3) sequence of array A078740 ((3,2)-Stirling2) divided by 6.

%F a(n)= n!*(n+1)!*(-3 + (n+2)*(n+1)/2)/(3!)^2, n>=2.

%F E.g.f.: (hypergeom([2, 3], [], x) - 3*hypergeom([1, 2], [], x) + 2)/(3!)^2.

%F a(n)=product(j+2, j=0..n-1)* (-3*product(j+1, j=0..n-1) + product(j+3, j=0..n-1))/(3!)^2, n>=2. From eq.12 of the Blasiak et al. reference given in A078740 with r=3, s=2, k=3.

%F D-finite with recurrence a(n) +(-n^2-7*n-24)*a(n-1) +12*(n^2+4*n+6)*a(n-2) -36*n*(n+1)*a(n-3)=0. - _R. J. Mathar_, Jul 27 2022

%p A091549 := proc(n)

%p n!*(n+1)!*(-3 + (n+2)*(n+1)/2)/(3!)^2 ;

%p end proc:

%p seq(A091549(n),n=2..30) ; # _R. J. Mathar_, Jul 27 2022

%K nonn,easy

%O 2,2

%A _Wolfdieter Lang_, Feb 13 2004