%I #14 Dec 27 2019 06:34:29
%S 4,52,1060,21301,427873,8594032,172615738,3467079760,69638158519
%N a(n) is the smallest j such that 1/1 + 1/4 + 1/7 + ... + 1/j exceeds n.
%F The next term is approximately the previous term * e^3.
%t s = 0; k = 1; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 3]; Print[k]; k += 3, {n, 1, 7}]
%Y Cf. A002387, A056053, A056054, A091462, A091464.
%K nonn,more
%O 1,1
%A _Robert G. Wilson v_, Jan 12 2004
%E Name edited by _Jon E. Schoenfield_, Dec 20 2019
%E a(8)-a(9) from _Hugo Pfoertner_, Dec 27 2019