|
|
A091415
|
|
Numbers n such that n!*2^n - 1 is prime.
|
|
7
|
|
|
2, 3, 4, 8, 13, 32, 41, 45, 59, 97, 107, 364, 421, 444, 1164, 1663, 3202, 4335, 4841, 13528, 22159, 38095, 50327, 72853
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(1)=2 because 2!*2^2 - 1 = 7 is prime
a(2)=3 because 3!*2^3 - 1 = 47 is prime
|
|
MATHEMATICA
|
For[n=1, n<1000, n++, If[PrimeQ[2^n*n!-1], Print[n]]] (Steinerberger)
|
|
PROG
|
(PARI) f(n)=n!*2^n -1; for (i=1, 363, if(isprime(f(i)), print(i)))
|
|
CROSSREFS
|
A093173 gives the corresponding primes.
|
|
KEYWORD
|
hard,more,nonn
|
|
AUTHOR
|
Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 02 2004
|
|
EXTENSIONS
|
a(15) from Mohammed Bouayoun (Mohammed.Bouayoun(AT)yahoo.fr), Apr 13 2006
Corrected and extended by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
|
|
STATUS
|
approved
|
|
|
|