login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lengths of the B blocks in analysis of A090822.
7

%I #14 Aug 05 2018 11:59:20

%S 1,3,9,19,47,98,220,441,885,1771,3551,7106,14279,28559,57121,114243,

%T 228495,456994,914012,1828025,3656053,7312107,14624223,29248450,

%U 58497096,116994195,233988391,467976791,935953586,1871907196

%N Lengths of the B blocks in analysis of A090822.

%C Also, values of len_y(n) when len_x(n) = 0 in A090822.

%H F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Sloane/sloane55.html">A Slow-Growing Sequence Defined by an Unusual Recurrence</a>, J. Integer Sequences, Vol. 10 (2007), #07.1.2.

%H F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [<a href="http://neilsloane.com/doc/gijs.pdf">pdf</a>, <a href="http://neilsloane.com/doc/gijs.ps">ps</a>].

%H <a href="/index/Ge#Gijswijt">Index entries for sequences related to Gijswijt's sequence</a>

%F a(1) = 1; for n > 1, a(n+1) = 2*a(n) + A091579(n).

%F This roughly doubles at each step and a(n) -> 1.743349432191828... * 2^n.

%Y Cf. A090822, A091579, A091410, A095828.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Mar 04 2004

%E 14279 and 28559 from _Allan Wilks_, Mar 04 2004

%E Extended by _N. J. A. Sloane_, Mar 06 2004