login
A091367
Primes p such that the sum of the digits raised to the 4th power is prime.
5
11, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 113, 131, 179, 191, 197, 223, 269, 311, 313, 331, 353, 379, 397, 401, 443, 461, 601, 607, 641, 661, 719, 739, 809, 883, 911, 937, 971, 1013, 1019, 1031, 1033, 1091, 1097, 1103, 1109, 1181, 1301, 1303, 1367, 1433
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 11 because 1^4 + 1^4 = 2 which is prime.
a(10) = 89 because 8^4 + 9^4 = 10657 which is prime.
MATHEMATICA
upto=500; Select[Prime[Range[upto]], PrimeQ[Total[IntegerDigits[#]^4]]&] (* Paolo Xausa, Nov 23 2021 *)
PROG
(Python)
from sympy import isprime, primerange
def ok(p): return isprime(sum(int(d)**4 for d in str(p)))
def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)]
print(aupto(1433)) # Michael S. Branicky, Nov 23 2021
CROSSREFS
Cf. A046704 (primes whose digits sum to a prime), A052034 (primes whose digits squared sum to a prime), A091366 (primes whose digits cubed sum to a prime).
Sequence in context: A136000 A054723 A109981 * A088136 A164932 A086244
KEYWORD
base,nonn
AUTHOR
Chuck Seggelin (barkeep(AT)plastereddragon.com), Jan 03 2004
STATUS
approved