%I #7 Mar 31 2012 14:02:20
%S 0,0,1,0,2,1,4,5,13,19,38,69,129,242,451,848,1629,3039,5858,11041,
%T 21209,40478,77659,148986,286948,551944,1064949,2056282,3975512,
%U 7694488,14907270,28908990,56119905,109022319,211980753
%N How many more primes than irreducible GF(2)[X] polynomials there are in range [2^n,2^(n+1)].
%H A. Karttunen, <a href="/A091247/a091247.scm.txt">Scheme-program for computing this sequence.</a>
%H <a href="/index/Ge#GF2X">Index entries for sequences operating on GF(2)[X]-polynomials</a>
%F a(0)=a(1)=0, a(n) = A036378(n+1)-A001037(n).
%e There are 5 primes (17,19,23,29,31) in range [16,32], while there are only 3 irreducible GF(2)[X]-polynomials in the same range: (19,25,31), thus a(4)=2.
%Y First differences of A091231.
%K nonn
%O 0,5
%A _Antti Karttunen_, Jan 03 2004