Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jun 10 2018 21:13:59
%S 0,1,2,3,4,7,6,11,8,5,14,13,12,19,22,9,16,25,10,31,28,29,26,37,24,21,
%T 38,15,44,41,18,47,32,23,50,49,20,55,62,53,56,59,58,61,52,27,74,67,48,
%U 69,42,43,76,73,30,35,88,33,82,87,36,91,94,39,64,121,46,97,100,111,98
%N Factorization-preserving isomorphism from nonnegative integers to binary codes for polynomials over GF(2).
%C E.g. we have the following identities: A000005(n) = A091220(a(n)), A001221(n) = A091221(a(n)), A001222(n) = A091222(a(n)), A008683(n) = A091219(a(n)), A014580(n) = a(A000040(n)), A049084(n) = A091227(a(n)).
%H Antti Karttunen, <a href="/A091202/b091202.txt">Table of n, a(n) for n = 0..8192</a>
%H A. Karttunen, <a href="/A091247/a091247.scm.txt">Scheme-program for computing this sequence.</a>
%H <a href="/index/Ge#GF2X">Index entries for sequences operating on GF(2)[X]-polynomials</a>
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F a(0)=0, a(1)=1, a(p_i) = A014580(i) for primes p_i with index i and for composites a(p_i * p_j * ...) = a(p_i) X a(p_j) X ..., where X stands for carryless multiplication of GF(2)[X] polynomials (A048720).
%F Other identities. For all n >= 1, the following holds:
%F A091225(a(n)) = A010051(n). [Maps primes to binary representations of irreducible GF(2) polynomials, A014580, and nonprimes to union of {1} and the binary representations of corresponding reducible polynomials, A091242. The permutations A091204, A106442, A106444, A106446, A235041 and A245703 have the same property.]
%F From _Antti Karttunen_, Jun 10 2018: (Start)
%F For n <= 1, a(n) = n, for n > 1, a(n) = 2*a(n/2) if n is even, and if n is odd, then a(n) = A305421(a(A064989(n))).
%F a(n) = A305417(A156552(n)) = A305427(A243071(n)).
%F (End)
%o (PARI)
%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
%o A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
%o A305420(n) = { my(k=1+n); while(!A091225(k),k++); (k); };
%o A305421(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305420(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
%o A091202(n) = if(n<=1,n,if(!(n%2),2*A091202(n/2),A305421(A091202(A064989(n))))); \\ _Antti Karttunen_, Jun 10 2018
%Y Inverse: A091203.
%Y Several variants exist: A235041, A091204, A106442, A106444, A106446.
%Y Cf. also A000005, A091220, A001221, A091221, A001222, A091222, A008683, A091219, A000040, A014580, A048720, A049084, A091227, A245703, A234741.
%Y Cf. also A302023, A302025, A305417, A305427 for other similar permutations.
%K nonn,look
%O 0,3
%A _Antti Karttunen_, Jan 03 2004