login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X n matrices over symbol set {1,2,3,4,5} equivalent under any permutation of row, columns or the symbol set.
9

%I #17 May 02 2022 09:31:45

%S 1,1,9,649,2283123,173636442196,234378355489344704,

%T 5830719097591168695360621,2779203181367458204944451774688032,

%U 26174539685600184383643311230836752183522328,4992259182572292655057303928366260085844535079288641049

%N Number of n X n matrices over symbol set {1,2,3,4,5} equivalent under any permutation of row, columns or the symbol set.

%H C. G. Bower, <a href="/A091057/a091057.html">Explanation of A091057-A091062</a>

%H <a href="/index/Mat#inequiv">Index to number of inequivalent matrices modulo permutation of row and columns</a>

%F a(n) = sum_{1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n, 1*u_1+2*u_2+...=5} (fixA[s_1, s_2, ...;t_1, t_2, ...;u_1, u_2, ...]/(1^s_1*s_1!*2^s_2*s_2!* ... *1^t_1*t_1!*2^t_2*t_2!* ... *1^u_1*u_1!*2^u_2*u_2!*...)) where fixA[...] = prod_{i, j>=1} ( (sum_{d|lcm(i, j)} (d*u_d))^(gcd(i, j)*s_i*t_j)).

%Y Cf. A091057-A091061.

%Y Column k=5 of A242095.

%K nonn

%O 0,3

%A _Christian G. Bower_, Dec 17 2003

%E a(10) from _Alois P. Heinz_, Aug 14 2014