login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least k such that k*prime(k) > 10^n.
2

%I #33 Jan 04 2024 17:32:23

%S 1,3,7,17,48,134,382,1115,3287,9786,29296,88181,266694,809599,2465574,

%T 7528976,23045352,70684657,217196605,668461874,2060257099,6358076827,

%U 19644205359,60757729194,188099056251,582846849914,1807483210259,5609430824151,17420628067997

%N Least k such that k*prime(k) > 10^n.

%C Does lim_{n->oo} a(n+1)/a(n) exist? If so, is the limit Pi? - _Ryan Propper_, Sep 15 2005

%H Robert G. Wilson v, <a href="/A090977/b090977.txt">Table of n, a(n) for n = 0..36</a> (terms 1..36 from Chai Wah Wu).

%e a(3) = 17 as 17*prime(17) = 17*59 = 1003 > 10^3.

%p for n from 0 to 11 do b:=proc(k) if k*ithprime(k)>10^n then k else fi end: a[n]:=[seq(b(k), k=1..100000)][1]: od: seq(a[n], n=0..11); # _Emeric Deutsch_, Aug 04 2005

%t n = 0; For[k = 1, k > 0, k++, If[k*Prime[k] > 10^n, Print[k]; n++ ]] (* _Ryan Propper_, Sep 15 2005 and modified by _Robert G. Wilson v_, Feb 25 2019 to reflect the offset of 0 *)

%K nonn,base

%O 0,2

%A _Amarnath Murthy_, Jan 04 2004

%E More terms from _Emeric Deutsch_, Aug 04 2005

%E More terms from _Ryan Propper_, Sep 15 2005

%E a(20)-a(28) from _Chai Wah Wu_, Apr 29 2018

%E a(0)=1 prepended by _Robert G. Wilson v_, Feb 25 2019