login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090915 Permutation of natural numbers arising from a square spiral. 6
1, 8, 7, 6, 5, 4, 3, 2, 9, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 25, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 49, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Write out the natural numbers in a square counterclockwise spiral:

.

  17--16--15--14--13

   |               |

  18   5---4---3  12

   |   |       |   |

  19   6   1---2  11

   |   |           |

  20   7---8---9--10

   |

  21--22--23--24--25

.

Now read off the numbers in a square clockwise spiral: 1 -> 8 -> 7 -> 6 -> 5 -> 4 -> 3 -> 2 -> 9 -> etc.

LINKS

Eric M. Schmidt, Table of n, a(n) for n = 1..1000

MATHEMATICA

With[{x = Floor[(Floor[Sqrt[n-1]]+1)/2]}, Table[If[n==(2*x+1)^2, n, 8*x^2 -n+2], {n, 1, 75}]] (* G. C. Greubel, Feb 05 2019 *)

PROG

(Sage)

def a(n):

    x = (isqrt(n-1)+1)//2

    return n if n == (2*x+1)^2 else 8*x^2 + 2 - n

[a(n) for n in (1..75)] # Eric M. Schmidt, May 18 2016

(PARI) {s(n) = ((sqrtint(n-1)+1)/2)\1};

for(n=1, 75, print1(if(n == (2*s(n)+1)^2, n, 8*s(n)^2-n+2), ", ")) \\ G. C. Greubel, Feb 05 2019

CROSSREFS

Cf. A020703, A090861, A090925, A090928, A090929, A090930.

Sequence in context: A344383 A055119 A265338 * A194756 A132672 A212410

Adjacent sequences:  A090912 A090913 A090914 * A090916 A090917 A090918

KEYWORD

easy,nonn

AUTHOR

Felix Tubiana (fat2(AT)columbia.edu), Feb 26 2004

EXTENSIONS

Offset corrected by Eric M. Schmidt, May 18 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 26 13:09 EST 2022. Contains 350598 sequences. (Running on oeis4.)