login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090897 Next n digits of Pi. 7

%I

%S 3,14,159,2653,58979,323846,2643383,27950288,419716939,9375105820,

%T 97494459230,781640628620,8998628034825,34211706798214,

%U 808651328230664,7093844609550582,23172535940812848,111745028410270193,8521105559644622948,95493038196442881097

%N Next n digits of Pi.

%C It seems that all terms have at least one prime factor that does not appear in the combined list of prime factors of the preceding terms of the sequence. - _Mario Cort├ęs_, Aug 20 2020 [Checked up to n=65. - _Michel Marcus_, Aug 21 2020]

%H Michel Marcus, <a href="/A090897/b090897.txt">Table of n, a(n) for n = 1..100</a>

%F a(n) = floor( Pi * 10^(n*(n+1)/2-1) ) mod (10^n). - _Carl R. White_, Aug 13 2010

%e a(3) = 159 because after the first and the first two digits of Pi the next three are 159.

%p Partitioner := proc(cons, len) local i, R, spl; R := []; i:=0;

%p spl := L -> [seq([seq(L[i], i=1 + n*(n+1)/2..(n+1)*(n+2)/2)], n=0..len)]:

%p ListTools:-Reverse(convert(floor(cons*10^((len+1)*(len+2)/2)), base, 10)):

%p map(`@`(parse, cat, op), spl(%)) end:

%p aList := -> Partitioner(Pi, 20); aList(20); # _Peter Luschny_, Aug 22 2020

%t With[{pi=RealDigits[Pi,10,500][[1]]},FromDigits/@Table[Take[pi,{n (n-1)/2+1, (n(n+1))/2}],{n,25}]] (* _Harvey P. Dale_, Dec 24 2011 *)

%o (PARI) lista(nn) = {my(nd = 5+nn*(nn+1)/2); default(realprecision, nd); my(vd = digits(floor(Pi*10^nd))); my(pos = 1); my(vr = vector(nn)); for (n=1, nn, vr[n] = fromdigits(vector(n, k, vd[k+ pos-1])); pos += n;); vr;} \\ _Michel Marcus_, Aug 21 2020

%Y Cf. A000796 (Pi), A016062, A081368.

%K easy,nonn,base

%O 1,1

%A _Michael Joseph Halm_, Feb 26 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 05:48 EDT 2021. Contains 343688 sequences. (Running on oeis4.)